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SUMARY

The National Assessment of Educational Progress (NAEP) has had as its

purpose the measurement of educational achievement in children and young adults.

NAEP Report 7 (1971) is of particular interest and importance in that it

characterizes the performance of blacks, of respondents with differing levels

of parental education, and respondents from differing types of community.

The authors note that the report describes differences as they.are and as

they would be in particular subgroups if the effects of other characteristics

were represented proportionately in each subgroup. Since in a direct com-

parison between group effects, one characteristic can masquerade effects of

another, the method selected for comparing groups is of great importance.

Tor example, on science exercises in the report there is a 20% difference

between the extreme affluent suburbs and the extreme inner city. Because of

the difference in parental education of the two groups, part of this 20%

difference may be "considered to grow out of the difference in parental

education." One would wish to compare the two groups as if they wer& com-

parable with respect to parental education.

The procedure called "balancing" is introduced in the NAEP report as an

adjustment method for this purpose. Little seems to be known about the pro-

perties of the method beyond the brief description given in the report. Since

it is apparent that "balancing" is being used extensively both in the NAEP

work and in the analysis of data from state assessments such as the State

Assessment cf Educational Progress in North Carolina, the development of a

better understanding of the Method and an evaluation of its strengths and

weaknesses is vital. This has been the principal aim of the research described

in this report.
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The investigation of the nature of balancing has required a detailed

investigation of the nonorthogonal analysis of variance, the fundamental

concepts of marginal means and marginal populations, as well as the investi-

gation of balancing-like data analytic techniques such as "smear and sweep,"

analysis of covariance, and standardization. It has been concluded that

the general framework of nonorthogonal analysis of vaiiance encompasses

the most useful of the adjustment procedures when used in conjunction with

the estimation of weighted marginal means.

The material in this report was prepared by

Mark I. Appelbaum

Elliot M. Cramer

Lyle V. Jones

Scott E. Maxwell

Samuel Peng
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Chapter I: Introduction

In surveys one typically describes the ways in which particular groups

of individuals differ. One would frequently like to know why the groups differ

and whether the differences might be ascribed to other vakiables which might

be modified by educational intervention. The National Assessment of Educational

Progress (NAEP), for example, has had as its purpose the measurement of educational

achievement in children and young adults. Of particular interest has been the

performance of blacks, of respondents with differing levels of parental educe--

tion, and types of community. NAEP Report 7 (1971) describes differences

as they are and as they would be in particular subgroups if the effects of

other characteristics were represented proportionately in each subgroup. The

method of comparison is of great importanceSince in a direct comparison of

groups the differences in one characteristic may actually be due to another

characteristic. The procedure called "balancing" is introduced as an adjustment

method for this purpose, apparently for the first time. It is described by the

as follows:

"The unadjusted results as reported here and in Report 4 clearly and

accurately estimate the differences in achievement between specific groups of

children. For example, over all the science exercises, the median percentage

difference between I3-year-olds in the Extreme Affluent Suburbs and in the

Extreme Inner City is 20% (from Exhibit 6-1). Except for sampling error, this

accurately reflects how these two groups differ.

"However, children in the Extreme Affluent Suburb tend, more than children

in the Extreme Inner City, to have better educated parents. Because of this

lack of balance, part of the difference between these two groups may be con-

sidered as growing out of the difference in parental education. Part, also,

may be attributable to other factors on which the two groups differ. Some of
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these factors have been determined for our respondents--their sex, color and

the region of residence. Many other possibly relevant factors have not been

determined, such as the economic level of the children's parents and the cultural

environment in the home.

"It is natural to ask, 'What would the difference between these extreme

types of community have been if the distribution of Parental Education, sex,

color and region had been the same for both types of community referred to

above?' Were it possible to rearrange the world to equate these distributions

for each type of community, the effects upon our nation and its schools would

be profound. Such rearrangement is not possible. It is usually approprIate to

think of the balanced results presented in this report as reflecting the dif-

ferences we would see in the absence of masquerading by the other four factors.

We can be reasonably sure the balanced results do a much better job than the

unadjusted results of reflecting such differences."

Apparently the only justification currently availa6le for the use of the

method is contained in a ten page appendix of illustrative examples. The basic

data treated in the examples are two-way tables of frequency counts giving the

number of individuals in a particular cell who have successfully performed on a

particular science exercise. This is illustrated in Example 1 where a random

sample of 600 individuals is drawn from some well-defined population. The number

of cases in each cell is representative of relative number in the population

for the particular combination of conditions specified, and the degree of suc-

cess for that group is estimated by the proportion of respondents giving correct

answers to an exercise.

From the two tables, one for numbers of observations and one for numbers

of successes, the marginal values are row and column totals.

8
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Example 1

nuMber of observations

B

1 2

number of successes

13

1 2

1 100 100 200 1 50 30 80
A 2 50 150 200 B 2 30 60 90

3 0 200 200 3 -- 100 100

150 450 600 So 190 270

The problem of concern to the authors of the NAEP Report is that the

marginal proportions may not be representative of the underlying effects.

There is one sense in which these values are representative; the data are from

a well defined population, and the marginal proportions are estimates of propor-

tion of success for that population. However, if one wishes to get at an

assumed underlying effect of extreme inner city uncontaminated, say, by the

effect of parental education, these marginal values are not representative.

Their introduction of balancing was an attempt to obtain representative values.

The NAEP Report notes that interactive differences are not considered and

balancing does not adjust for them; and also that, "The deficiencies of balancing

are clear; it cannot be the final answer." Balancing will frequently involve

estimation in a linear model that is known to be wrong, e.g., when there are

interactions present. Also there are other choices of weights, and although

other choices do not affect differences between effects, they do affect the

absolute magnitudes. We need then to develop a deeper undetstanding of nonor-

thogonal ANOVA which will carry over to the interpretation of balanced estimates,

as well as providing insight into data analysis more generally. It should be

noted that although the National assessment uses medians rather than means for

estimation and uses special methods for estimating standard errors, the formu-

lation presented here may perfectly well be used for estimating adjusted effects.

9
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We will show that the method of balancing csaa be developed in conceptually

quite a different way which makes clear that it is a special case Of nonortho-

gonal analysis of variance. The problem of interpreting balanced estimates

then can be related to the more general problem or interpreting aallsted effects

in the nonorthogonal analysis of variance. This More general probl-eM has been

of concern to us since there is not currently a Qonsensus of opiniOn on the

proper methods of analysis for this more general situation. This i-s reflected

by the divergent suggestions we have received from mathematical statisticians

regarding the testing of main effects by elimin sting both interacti-0ns aad

other main effects, as opposed to eliminating onay other main effeCts. Of

course such problems of interpretation arise in regression analysiO, too. We

have been concerned with this area as well. In a recent article (CraMer, 1972),

misuses of regression analysis were discussed, even some that had Veen published

in The American Statistician.

1 0
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Chapter II: Balancing and tlie Analysis of Variance

The primary aim of this grant, the explication of balancing in terms of

the analysis of variance, is presented in this chapter. It is shcwn that,

without question, balancing is intimately related to classical nonorthogonal

ANOVA. The implications for the interpretation of balanced results are

presented.

ii



The educational researcher eagaged in large scale multifnc-

tor survey research may often be faced with a substantial statis-

tical problem whenever the number of observational units is not

equal in each and every cell of an experimental or survey design.

This situation may arise for a number of reasons ranging from the

state of nature to the socio-politics of educational research.

.For whatever reason the nonorthogonality occurs, the statistical

problem remains the same, namely that of being able to estimate

the effects of the several states of nature uncontaminated by one

another. Simple methods of computing marginal means, marginal

percentages, etc. will not yield the desired results.

In an attempt to provide an appropriate method for assessing

such effects, Tukey and his associates in the NAEP (1971) studies

have offered a method called balancing or the balanced fit. While

this method does indeed provide the appropriate estimates of

effects under a somewhat restrictive set of assumptions, it is

presented in a manner which tends to obscure the meaning of these

estimates in relation to well known statistical methods. Indeed,

we shall show that the estimation procedure in balancing is nothing

more nor less than the estimation procedure in the ordinary Least Square

otimation of a nonorthogonal main effects model analysis of variance.

An Example
3

and an Incorrect (but Traditional) Analysis

Let us assume, for illustration, that the following survey

"had been undertaken - first grade claasrooms from three geographical

3
The data for this example were adapted from NAEP Report 7 (1971).

12
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areas of the country have been randomly selected, 200 from each

area, and the method of teaching reading noted for each class -

either "phonic method" or "sight method." Each student in each

class is given a standardized reading test and the total class-

room experience is rated a success if one half ot more.of the

students in the class score at or above their individual age norm

On that test. The researcher is interested in assessing the

effects of method of instruction and region of residency upon

reading skills.

Table 1.shows the number of classrooms (n
ij

) observed in

each cell of the survey. It is apparent from Table 1 that there

are three times as many sight reading classes as phonic reading

classes and that there are no phonic classes in Region III. Further-

more, the design is unbalanced (nonorthogonal) since the cell

frequencies are unequal and there is no constant of proportionality

between the numbers in either rows or columns of the design.

Let us assume-that the world operates in such a vay that the

proportions of successes (classrooms in which 50% or more of the

students operate at or above their age norm) are as given in

Table 2. Within any of the three regions the phonic method

is 20 percentage points higher than the sight method, and within

either reading method Region I is 10 percentage points higher

than Region II which is in turn 10 percentage points higher than

Region III.

Now let us suppose that our researcher is "in luck" and the

true proportions given in Table 2 exactly reveal themselves in
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Table 1

Number Ot Observations

Region 1

Phonic

in Cells (n

.Sight

100 200

Regio4 SO 150 200

I

Region )rI O 200 200

150 450 600

Table 2

True frOPortion of Successes in Cells

Phonic 'Sight

Regioll I
.70

Rnololl II .60

Reolort III .50

.50

.40

.30

14



Table 3

Observed Number of Successes, kij, with Observed Proportion,

of Successes in parentheses

Phonic Sight

r-
Region I

I (70)

Region II

Region III

30

50
(.50)

(.60)
-60

(.40)

60
(.30)

1 ,5

P
ij
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his data, i.e., the number of successes kij yielding observed pro-

portions pij in each cell are as presented in Table 3. We can

see that in each cell, save Region III phonic classes which are

nonexistent, the proportion of successes is identical to that

given in Table 2. The researcher is, however, interested in the

differential effects of region and method of instruction, and so

calculates the number of successes in each row and each column,

finding the r .,;inal number of suc-^oses given in Table 4. Upon

con-, g eercentages (dividing the marginal number of succeises

by the marginal totals), he finds the percentageergiven in the

column labeled "Marginal 2 Successes." He further notes that

overall 45% of the classrooms meet the success criteria. Since

he is interested in the differential effects of region and

instructional method, he then subtracts the total percent success

(45%) from each of the marginal perce,r-r.ages yielding the

results presented in the column labe "Differential %."

Theme results indicate that the diffe nee between Region I mrriL

Regt= II is 15% and that between II Jier.-1 III is 15% while tma.

diffarence between the instructional m Lhods is about 29%.

We know, however, from Table 2 that the effects are actually IT%

for each region and 20% for reading method. There appears to

be a contradiction.

The e results illustrate the prollem encountered when the

frequencies in a design are unequal.and disproportional.

Cle,--,Fr-77 we desire an analytic method which accurately reflects

the etlferential effects of the classificatory variables and

17



which can reproduce accurately the observed data from the estimated

effects. The naive method illustrated above does neither.

The problem is, essentially, that in the disproportional cell

frequency case, one effect can masquerade as another. The

example given is particularly complex because the estimates of

the region effect are confounded with those of instructional

method, while simultaneously the instructional method effect is

confounded with region effects (i.e., neither set of estimates is

free of the inf1.,ence of the other).

The Balanced Fit and Estimated Effects

The method proposed in NAEP Report 7 (1971) for estimating

the effect of one classification variable uncontaminated by the

influen-s of the othe:r in a two way croas-classification has

been des-1natmd: the "balanCed fit" by its.authors. We find the

fundamental norrinciple of the balanced fit stated in the NAEF

report :as., ii-611ows:

-We intend to and group effects (expressed in per-
certtames) that, -when combined by addition with each
otlitet and with:.the overall percentage of.success, give
fi-iitAlpe=centages of success that correspond with the
at1.7a1 data in one simple way:

--if we chmase any group by a single characteria-
ti&. 4a7 group A, and if we use the fitted percentages
and the actual number of cases to calculate the num-
berTif successes for each subg=oup that involves (group
A), and if we then add these ck...lculated numbers of suc-
cess the total number of successes over all sub-
grzAv.pis-wIll be the same as the total actually observed
in the Aata.

Let ma estimated group effects to mean differential

row effects, say and differential column effects, say

p.j-p.. wh,_ra 2.. is the estimated overall proportion of

18



successes. We may then write an expression for the estimated

proportion of..successes in each cell as

A A A A A

r
A

+ -P ) + (p
s
-P ).

ij .

(1)

Since the observed number of successes for each cell in n p
iJ

A

while the predicted number of successes is niipii, the basic

principle of balancing, that the sum of the observed numbers

of successes equal the sum of the predicted number of successes

then gives the row conditions

En ijp ij En
ij

p
ij

1.41.1,2 st ,I

and similarly the column conditions

En p En
ij ijEij

or equivalently

En
ij

(p
ij

-p
ij

) = 0

En
ij

(p
ij

-p
ij

) = 0

j=1,2,...,J

(2)

Since there are, in fact, infinitely many solutions to this system

of simultaneous equations, two additional conditinns are intro-

duced in balancing which make the solution unique

A A

En
i

(p
i

-P ) = 0
. . .

(3)

where n
i.

and n
.j

are the numbers of observations in the ith row

and jth column, respectively. Applying the constraints in (3) to

(1), we see that

19
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En p p
1.1 1.A. and

En

P . °
.j

and that the p1 and psj are marginal proportions using the weights

n.j for rows and n for columns. As the NAEP Report notes, these con-

ditions, (2) and (3), are sufficient to uniquely define the group

effects in (1) and hence to uniquely define the estimated marginal

proportions pi. and p.j. We shall now'show that (1), (2), and

(3) have exact parallels in the nonorthogonal anaivsl

Estimation in the Nonorthogonal Analysis of Variance

Readers familiar with the analysis of variance (ANOVA) will

recognize certain similarities between the'survey design of the

example and designs often analyzed by ANOVA techniques. We shall now

show that the estimates of differential effects obtained from the

balancing procedure are exactly the same as those produced by a

nonorthogonal analysis of- variance of a main effects model.

It should be emphasized that we are dealing, at this time, with

estimation in the_ANOVA model, not the tests of significance

which are more commonly seenin ANOVA applications.

This important relptionship between balancing and ANOVA will

be more easily seen if we adapt our notation anA terminology to

that commonly employed in the ANOVA context. In this case we are

dealing with a two-way croas-classification, often called a two-

way factorial, with unequal and disproportional cell frequencies

(a nonorthogonal factorial aesign). We nvw consider our first

Oassification (factor), laheled A, to have I. levels and the second

classification (factor), labeled B, to have J levels. We

will use the symbol y to represent the score of the kth

2 0
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classroom under the ith level of A and the jth level of B.

Let y equal one for a success (if 50% or more of the students

in the class score at or above their age norm) or zero for a

failure; y is then a binary random variable. The cell mean

ni,
7
ij

E Jy /n
"lc "

is simply the observed proportioL vf ,uccesb%,, in the i,jth cell

anAl will correspond to pijin our earlier notation.

In the estimattom phase of the analysis of variance employing

a maim (effects model, one attempts to predict, the i,jth cell

meam through the linaar model

A A A
y
ij

p+a
i
+0

j

where the a
i
may be thought of as the estimated differential

p.

effect of the ith level of A, as the estimated differential
A

effect of the jth level of B, and p as a general or average

effect about which the differential effectsoperate. In the

analysis of variance we estimate the values of these parameters

according to the Method of Least Squares, i.e., so that the sum

of squared deviations of the observed scores from the predicted
A

scores is a minimum. If we let pij indicate that value of the

cell mean predicted from the Least Squares estimates of the

parameters for the i,jth cell, writing
A A , A

+ + (4)

we may amain the least squares estimates of the unknown parameters

by minimizing

,2
S E En

ii ij

21
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Since we are predicting cell means, we weight each cell by

the number of observations in that cell. To minimize S we may

differentiate with respect to V, ai and a., to obtain

p.

E E n
ij

(p
ij

-P )

i j

E n (o -p ) = 0ij 11 11

E n (P -p
11

) = 0.

(5)

The equations in (5),usually refe=red to as "normal equations"
A

in the ANOVA context, do not themselves uniquely define p, ai, and
A A

0j. They do, however, yield unique values of pij; that is, any

set of values which is a solution of (3) will yield the same

values of the pij. Substituting into (4), it follows that
A A A A

ai - ak = p
ij

-p
kj.

is uniquely defined regardless of which

particular set of a's are used. This result is easily gemeralizable

to the fact that contrasts in the unknown parameters are unique

for any solution of (5).

In order to obtain computationally unique solutions for

these parameters it is the usuml practice in the analysis of

variance to further constrain the system by the condition that
A

E a
i

E 8 im O.ii
While this is the most commonly eMployed set of constraints,

any other set of constraints will work equally well and will not

change the meaning of the resulting solution so long as one considers

only contrasts in the parameters. Given thils freedom of choice,

we prefer to use the const=mints

En a - En 0
i .j j

2 2

(6)



-22-

which are those commonly employed in the nonorthogonal ANOVA

.(see for example Winer, 1971).

We nov r

the balancing

equation set 4a exec ly 'he same as

set (2). II we further eqvAte

Ii p
A A A
a i P
A A

0 P -P
.j

equation (6) is exactly the same as the balancing equation (3).

Our basic ANOVA model (4) may then be written as

Pij 4 4 ) 4 )4 (7)

so that we have an'exact equivalence between (7) and (1) and

hence between balancing and nonorthogonal ANOVA.

Substituting (6) and (4) in (5) we can also show that

EEntiPii
U

EZn
ij

as is assumed in the NAEP Report. Thus, we see that the bal-

ancing equations are but a special case of the least squares

equations of a nonorthogonal ANOVA in a main effects model,

and, in this sense, the two are equivalent.

The -correspondence between the balancing algorithm and that

of the nonorthogonal analysis of variance makes possible the use

of standard ANOVA programs which properly analyze nonorthogonal

designs (e.g., Cramer, 1967) for obtaining balanced fits. Since

current usage of the balancing technique has been limited to

obtaining estimated cell neans and contrasts in main effect

parameters there is no particular c-oncern with the constraining

system employed since'these solutians are invarimat with respect

2 3



.-23-

to the constraining system. If, however, one wishes to Obtain

the estimates of the parameters themselves it would be

necessary to employ an ANOVA program which allows for Vie

specification of the constraints given ia (6). Cramer's (1967)

program, for one, allows such a specification.

.Generalization to Higher Order Classifications and to Dat-t sat.
Other Than Proportions

It can be shown that the generalization of balanciag to more

than two classifications is equivalent to estimation in 8 higher

order nonorthogonal ANOVA with a main effects additive 0041.

Thus, it is possible to produce estimates of effects balaaced for

mmre than one interfering variable. Furthermore, there la no

need to restrict estimates to those of proportions. Since bal-

ancing does not uniquely require data in the form of prePertioos

(although it is nearly always so illustr sted), one could equally

well use the cell means of continuous resDonse data in order to

obtain balanced estimates of differential effects.

The Interpretation and Meaning of Balanced Estimate)

When dealing with the nonorthogonal analysis of vail.a4ce

(of which balancing is just a special cats's) careful atteOtion

must be given to the meaning and interpretation of estinostes and

teats of significance. Appelbaum and Crinaer (1974) have discussed

the problems involved in tests of signifi-eance at some leflath.

The critical problem in the nonorthogonal ease is that tPe

effects of tbe several states of nature OPon the dependelt

varlable in general cannot be estimated or tested separsely;
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they are inherently confounded. The exact manner in which such

data are treated has very profound effects upon the meaning

of the resulting estimates and the ways in which they may be

interpreted.

A thorough understanding of the nature of the estimation

procedure used in the nonorthogonal analysis of variance (and

lience balancing) may be best facilitated from a consideration of

marginal means rather than of the estimates themselves.

The parameters estimated in ANOVA (the effects) are defined as

functions of certain population means. It is clear that all the

information available for the estimates of effects is included

in the estimates of the marginal means. Recalling that the pij

are themselves cell means, the differenges_between effects:which are

of particular interest can also be expressed as differences

in marginal means. For instance, if we were interested in the

differendes between effects of the first two levels of the A classi-

A A
fication, we would be interested'in

/n the process of selecting the way in which we produce the

estimates of these differences, we are.actually making

two quite different (and to some extent independent) decisions.

One is fundamentally a question of what it is that we wish to

estimate; the second is a decision -Ofhow to estimate that which

we have decided to estimate. The first is a question of weighting;

the second is a question- of models and adjustments.

When one does an experimental study, be it a true experimental

manipulation or a survey, one considers that each cell of the
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design represents a random sample from some conceptual population.

In a two way classification, the true population mean of one such

conceptual population would be represented as pij. It is these

and only these basic populations which have an invariant meaning

defined by the basic design of the experiment. when we begin

to introduce the concept of a marginal mean (as we must when we

talk of effects) we are adding.a new conceptual dimension, for

marginal means are weighted linear combinations of the basic

population means. The way we choose to weight the population means

in effect defines the marginal populations from which the estimates

will be obtained. It must be understood that (1) marginal

populations have no reality beyond the nature of the basic

populations and the way in which they are combined, and (2) that

the meaning of the estimated effects will depend upon what weights

are selected (i.e., the weights will determine what is being

estimated).

A weighted mean is any linear combination of observations with.

positive coefficients which sum to one. There are, of course,

many different sets of coefficients with this property, implying

that there are many different conceptual marginal populations

which could be defined. There are, however, three basic types

of weightings which might be employed for a two way design:

(1) equal weights, (2) singly subscripted weights, and (3) doubly

subscripted weights. In order to understand the nature of these

three weighting schemes, conaider for the moment the situation
A

in which we know the estimated population means pii for each and

every cell in a two way design. Consider the construction of row

marginal means with each of the three weighting schemes.
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In the first case, all Weights employed would he equal so

that- the marginal population mean for the ith row of the experi-

ment would be
^

= Ep ij /J.

This type of marginal mean is usually referred to as an unweighted

marginal mean.. In this case, each of the basic populations

is treated as being identical to all other populations in its

contribution to the marginal populations. In the second case

the weights carry only a single subscript yielding row means of

the form

The several basic populations entering into the row marginal mean

are differentially weighted, but the weights are the same for

every row. These marginal means will, in general, be different

from the unweighted means. For the third case the weights for

eak:h row will sum to one but they will differ from row to row.

In this case the marginal mean for the ith row will be
A P.

A question which must concern us is "for what situation will we

want to use which of the various weighting schemes?" If in the

example considered we were interested in estimating the differences

between the two reading methods as thy are used throu hout the

country, we would be interested in differential effects based

upon weighted marginal means, where the weights reflect the number

of classes using a particular reading method in a particular region
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of the coutry (a doubly subscripted weighting system). If, on

the other hand, we were interested in estimating the differences

between the two reading methods as if they were equally used

throughout the country, we would be interested in differential

effects based upon equal weights. A third possibility would be

to assume that the use of both methods was in proportion to the

population in the various regions. This would imply that the ..

same weights would be used for both methods, i.e., singly-

subscripted weights. The choice of the weighting system is

entirely up to the investigator, but the choice is not a trivial

one. The selection of the weighting system basically defines

what it is that the researcher is referring to. One further

refinement on the nature of the weightsiin the case of balancing

will be added shortly.

The Nature of the Weights

Up to this point, nothing has been said about the nature

of the weights themselves. In practice the weights may represent

any conceptual entity which ihe researcher deems important, say

the relative cost of a treatment, the current social importance

of a particular segment of the population, etc. Surely the most

common weights by far are the relative sample sizes. Insofar

as the observed cell frequencies represent (are proportional to)

the actual population sizes, weighting by the cell frequencies

may be logically sound. In those cases where the observed cell

frequencies do not reflect any true state of nature, or when the

populations are considered to be infinite, such a weighting scheme

can make little if any sense.
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At this point a word of caution seems to be in order.

It is important to distinguish between weights as we have defined

them above and the coefficients of the "normal equations" in (5)

and in the constraints of (6). The weights are defined for the

purpose of const-ructing marginal populations; the coefficients

of (5) and (6) are the result of the Least Squares criteria and

are completely independent of considerations relating to the

definition of marginal populations.

The Problem of Estimation

Hairing decided upon a weighting scheme and thereby defining

marginal populations and a potential set of effects to be

estimAted, one is left with a second, although not totally

independent question of how to do the estimation. Clearly, if

we possess unbiased estimates of the individual population means

we can easily obtain unbiased estimates of the marginal means no

matter how they are defined. Since linear combinations of unbiased

estimates of population means produce unbiased estimates of the

same linear combination of population values, we may always

obtain the desired unbiased estimates. Thus, the problem of

estimation reduces to the problem of how to produce unbiased

estimates of the individual population means.

Whenever one establishes estimates of parameters, !Fay-

population means, one is always operating within the context

of a model; the nature of the obtained estimate depending upon

the model in which it is estimated. In the two way classification
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scheme there are five reasonable
4
, but different models which might

be used to estimate a typical population mean Ujj. These are:

i) u = p+a -143 +aB (the interaction or cell means model)
ij

ii) p
ij

= p+a +13
j

iii) p = p+a

iv) p

v) pij p

(the two main effects model)

(the main effects A model)

(the main effects B model)

(the grand mean model).

When an experimental design is nonorthogonal and when the Least

Squares estimation procedure is used for obtaining the estimates,

very different estimates of the population means will obtain for

estimation in the different models and, as a consequence,

different estimates of the marginal means and differential

effects will result.

If we choose to estimate the individual population means in

the first model (the interactive or cell means model), the ordinary

cell mean, y
1j,

is obtained as the estimate. y
ij

is always an

unbiased estimator of the population mean pij without regard to

which model obtains in nature. If, however, one of the simpler

models should be the true model, the variance of the y
ij

's will

be larger than the variance of the unbiased estimator resulting

4
Some authors have suggested other possible models, e.g.

= p+a +a$
ij

Problems involved with such models have been discussed elsewhere
(e.g. Appelbaum & Cramer, 1974) and are not considered here.
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from estimation in the correct model. Thus, Y.y while always

providing au unbiased estimator, will not be the minimum variane

unbiased estimator unless there is truly an interaction bet:wee=

the clessificatior

V4em_estimatom pr===eeds frrom the seco=d model (the two

mmitet5aFizts model), cum!. obtains the baAanced fit

estitmaxes of the population means (ores :valently the main

effec ANOVA estimates). These estimaltc,saTe =albdased only whn.

one wAf the non-interac_tion models (ii, iv, or v) holds in

nature -and twill be mit um variance unb..__sera only vhen model Li

holds. Thus, estimateo from model ii, often. called adjusted

estimates,are appropriate only in the non-interactive case.

In a similar fashion, estimates based on models iii, iv,

and v will be unbiased estimates only when the corresponding

models obtain. These estimates provide minimum variance unbiased

estimators only when the particular model holds.

One is free to select an estimation scheme based upon one's

belief in the state of nature, but one must always remember

that this choice will simultaneously affect the resulting

estimates both in terms of their unbiasedness and variance. In

order to obtain unbiased minimum variance estimates one must

estimate in the model corresponding to the true state of nature.

Should the model selected be too simple relative to the true

state of nature, the estimates will, in general, be biased;

should the model be too complex, the estimates will not be

minimum variance.
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Tihe inntenteection of-Weighting Schemes and EStimation

Amy p-octeinure for obtaining estimas of effects 171 an n'ul,a/

layout tzar sciv.%Le viewed as the inte,fztion of a weithming

scheme ETA ttat:-=ation procedure, ane its propertiez may be

better undferati=oic by examining the consluences of the_ individual

components- Ba-mm:,7:inf, is, in this view, the intersection of a

singly subAir7i weighting system with model ii estimation

(two main mf'etTie nodel). 'Thus, the balanced estimates of

differenti t. are estimates obtained employing singly

subscripted for each population and by aSsuming no

interaction-, umzrin_T the classification dimensions.

It is, 14Asr, possible to view balancing as the inter-

section of e weights and model ii estimates. This indeter-

minacy OCCEMN rai=ause of an interaction between the weighting

system and e--.4-,mation system employed. This result, which has

major implimame for the interpretation of the balanced fit

may be underst=md more easily by returning to our initial example.

The NAET toa-estIgata=s discuss.balancing in terms of'making

comparisons berlAa-u-om two groups as if the groups weTe identical to

one another in - ms of their compositions on other (interfering)

variables. This goal clearly implies a singly subscripted

weighting system. In terms of our initial example, this amounts

to asking abont thn, differences in reading method as if they were

used in the mama proportion in all three regions of the country.

Thus we would be imterested in the column marginal difference

with the row- weighted the same for both columns; i.e. we are
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Lmtereszed in

P 2 wherep Invp +vp
21 +v p-

.1 1 11 2 3 zl.

and p = v
1
112 + v

2
p
22

+ v
3
1132.2

The v
i
's are the weights to be applied to eaml region and may,

fox imstanee, reflect the relative sizes of region in

terms of the number of first grade classrooma_ We may now write
A A

P.1 P.2 1I.1 11.2 (v1/111 v2P21 7:31131)

A . A A A A

(v1P12 v2P22 v3P32 v1/111 1112) v711:ni 4122)

A A

v
3

(II
31- - 11

32 )*

The implication of the noninteractive model employed by the

balancing system, however, is that all row differences must be

equal across columns and that all column differences mmst be

equal across rows. Therefore'
(1' 11 111 2) 61 1 P2^ 3) (P 12

= A . Thus p., - p.2 = vlA + v2A + v3A 21 (v1 + vz + v3)A.

We further note that the weights must be chosen to sum to 1 by

their very definition and hence p
.1

- p
.2

must equal A.

The implication of this result is that it makes

abpolutely no difference how the subpopulations E..re weighted in

constructing the marginal population in the balanced solution as

long as =hey are weighted the same for each popmlAtion. This

implies that the true relative sizes of, say, reT,..ons of the

.country dn licit enter into the assessment of the methvds difference.

'Since equal weights are hut a special case of fil-17-71y smbscripted

weights they could equally well be used. We therelore conclude

that in balancing it makes not the least bit of difference



whet1er-7c we equally weiJ the -1-ilLbg-roupg or weight :lhem differenti-

all:, in the sense of ly sui,..cr:tpted weights.

The 'traditional hill: inco=e=::: analysis" prmated as the

Eirs t.. example in this papmr if am example of an igited

schze wirl model Lii etimat,ma .E)t.ained for =he s and model

iv e_stimtes obtained fcr the mMiumns. The incorra;tness of thte

analysis arises from the fact that ve are applytns a one main

effect model when inzleed there are rwo main effecrs. The row

marginal_ means are oibtained from a model p
iJ

114-ct
i
where

u+a .En
ij

p
ij

while the column mar-0.nel means are obtained from
J A

a model p11.41: where 11444cEniiPii.
i a

Conclusion

It has beem shown that the estimation procethure

empLoyed in balancing is nothimg more or less than thie Least

Squares estimation cf effects -in a nonorthogonal main effects

model analysis of variance. In assessing the apprcprtateness

of this method of analysis for a particular study, one must

consider the appropriateness of the two comportent elements; first

that of the weighting scheme empoyed and second that of the use

of the main effects. model.

Zelancing, it laaa been seen, can be viewed as employimg

either singly sultriptatd weights or equal weights; the resuLts

being: invariant c:o. this selecticm. It Should be .00ted that=hese

arm =mt. ttLhe only possibae schemes, nor the oniss rwressarily

.dest=md- ,One could altmrmativelk7 use the ce11 esntmates obtained

for tne solution of the balancimg equations, but .then use unagnal

weights to define marginal population means. The selection_ls up
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the researcher and derpettd6 only upon what it is that he wishes

to:msloimate.

The assessment of - use of the main effects model is a

somewffia:t more difficult ue due to the fact that the appro-

prj.atemess of the model -depends upon what is true in nature, not

stmply -xpr.,7m what we woulf-. like to be true. In many ANOVA'

applz1m-nsi thii_is-moh. a ilar,ticular.probletnfor one often

tescs sigmificance mez the interaction prior to estimation in

order to determine what _Is the proper model. In using balancing,

howevex, one Ls at the ontsfet assuming that the main effects

mode:: is aphrooriate. Tule basic implication of this assumption

is that Age are assuoingamo differential effect of one state of

nature manditional upon en;ther. In our example we are, for

instance, assuming th'a't the difference b,?.tweem the efficiency

of phon.:1.: and sight adthods of reading instruction is the same

tEsch and elzeri region under study. The tenability of the

our,inte=actimm assumrlrion is, of course, completely dependent

uTrom the parrzul_ar hmudy under consideratI.Jm and no general

-ru,Les csm be fi-:73rmd saying a hriori whmn the assumption holds.

Ttiere-mmy be f-r=rtrziLarcumstances under which the add...itive inodfel

iHzpIrzrmpria=e, h== i: would seem, in general, to be a dangerous

ammealropzion tm rour±liely ampLoy.
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Chapter 117... : The Nonort-nogonaL ANOVA

Central to the underatanti:ng balamting is thcancept of the nonnr-

thogonal ANOVIL. The followinF -21.1=er serves tc illundnate the fundamental

concepts of the nonorthoganal aa.s-1_4= and tc resolve a numher cf the contro-

versies surrounding this 6--1.1e7.7a_ t-77:71c.
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The mnnorthogonal, multifactor arelysis nt veriame (ANOW is, perhaps,

the singly mnst misunderstood ansaytic technique available to the behavioral

scientist save factor analy.a. Standard temtbooks all but ignpre it, or,

when they do consider this case, bury it -_-.n_ such confused _mathematics or

apnroxtmations as to make i barely undersmandable to even retiner statistically

sophisticated researchers. FBecent journal ectiCles (e.g.,. Joe, 1971; Overall

and Spiegel, 1969; Rawlings, 7_972; Werts and Linn, 1971; and Williams, 1972)

have attempted to clarify tta:sitnation and aet guidelines for the analysis

of nonorthogonal, multifectcr exneriments, "tyLlt have, in our opinion, done

neither. These papers halre, confuzed -the issues vir.:n 7narecessary

mathematical proofs, with. anti.zuated "appro-Tmate" methods, and Ilith the

implication that somehow ncnorthogonal esi 're -ases to be

avoided at all costs. So stf. LT' the be.Iithat tate:re samething

inherently "diffizult" or "strAtzge- ab,zmt tne nomorthognmaL caae that experi-

menters will, on .occasicm, :go : =usual 12:1=tlis, suclt -..ral.-,.danly discarding

data from selected cells_ in -_t51-. to _ath:L=7 an Dx.trn.onl,s,.: design.
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We,wish to argue that there is no conceptual difference between orthogonal

and nom-orthogonal ANOVA and that, indeed, the orthogonal design is a special,

and ocmasionally artificialpcase of the more general non-orthogonal design. By

approaching the entire issue of the analysis of variance as one of model com-

parisans the special problems encountered in the non-orthogonal case are rather

easily understood and resolved. The closely related problem of deletion of

variables in multiple regression analysis has been discussed by one of the

authors (Cramer, 1972). By treating the problem as one of comparisons of linear

models he has resolved the issue in a clear and fairly obvious manner. We believe

that a similar approach with non-orthogonal designs will lead to the same resolutiol

The easy access to sophisticated computer programs which perform the

amalysiL; of variance by a general linear model approach (e.g., MANOVA; Cramer,

1967) makes the computations for this method of dealing with non-orthogonal,

imultif=tor designs possible and eliminates, in most cases, the need and

desirability for "approximate" solutions.

Te=minollogy and basic concepts

Before proceeding with a detailed discussion of non-orthogonal analysis of

variance, it is necessary to-clarify some of the terminology and concepts that

are fundamental to these analytic techniques. A non-orthogonal design refers

to any experimental design in which the numbers of observations are not equal

in each an& every cell. This definition encompasses even designs that are

traditionally classified as proportional and includes designs that are not com-

plete factorial. Insofar as an experimental design may be considered *a

partially complete factorial design (e.g., Randomized Blocks, Latin Squares,

nested or hierarchical designs) etc.), the principles discussed in this paper

apply.
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We shall use the term method to refer to the estimation procedure which

we shall assume to be the Method of Least Squares. The concepts developed and

discussed in this paper apply only to Least Squares Analyses and should not

be applied to non-exact approaches such as the Unweighted Means Analysis (Winer,

1971; 445-449) nor to cases which employ some other method of estimation of

effects.

By an experimental desiga we shall mean the plan of the experiment determined

by the experimenter on the basis of his conception of some idealized state of

nature. The minimum requirements for an experimental design are the specification

of the experimental factors to be manipulated and the plan for random assignment

of experlmental units to treatments, including both the sampling plan and the

determination of the number of units per treatment. It *is the experimental design

which implicitly specifies a set of possible models or idealized states whose

appropriateness we shall attempt to assess.

Hypotheses or tests of hyketheses are, in essence, comparisons of various

models. It is fundamental that one understand that, within the analysis of

variance, one is always trying to assess the appropriateness of one model

in comparison to another one. To stress this point, we shall often refer to

significance tests as model comparisons. Unfortunately, the standard approaches

to the analysis of variance in most introductory courses overlook this con-

sideration and have led to much unnecessary confusion.

Finally, one must carefully consider those situations which may produce

a non-orthogonal design. First there is the case where the design is inten-

tionally planned as non-orthogonal and is executed as planned. Such designs

are reasonable and may be preferred in cases where contrasts of particular

cells are desired, or where greater precision of estimation is required in

some cells than in others. Similarly, some experiments, particularly those

involving concomitant variables as factors in the design, may be planned
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as non-orthogonal in order to allow naturally occurring differences in cell

frequencies to manifest their effects in the resulting tests. While these

designs are rarely encountered in psychological studies, they do have appli-

cations and present no particular difficulty in terms of "proper" analysis and

interpretation. The discussion of the non-orthogonal analysis of variance which

follows is directly applicable to those designs. The second, and far more

common, case occurs when a design (orthogonal or non-orthogonal) is not exe-

cuted as planned. That is, once the random assignment of experimental units

to treatments has Leen made, data are not obtained on some units. In this

second case, one of two different situations may have occurred and, depending

upon which is true, rather different approaches are required. It_ may be that

the "cause" of the loss of experimental units is a random phenomenon or

one unrelated to the experimental treatments. Death of experimental animals,

"no-show" of college subjects, etc. often may be viewed as essentially

random phenomenon. Again we have no particular problem for we are, in effect,

left with a random sample of a random sample which is itself a random sample,

and the methods of non-orthogonal analysis of variance to be discussed still

apply.

The situation that may cause considerable difficulty is when the "cause"

of loss of experimental units cannot be considered a random phenomenon (e.g.,

it may be related to the experimental treatment). This situation may be

obvious, as when the combination of treatments cause the death of some experi

mental units; or it may be subtle, as when one set of treatment combinations

are run lSte in the afternoon causing an increase in the no-show rate. In

such a case, there would seem to be no remedy short of pretending that the

missing observations are random, and hoping that the results will be reason-

able. perhaps the definitive statement was made by Cochran and Cox (1957,

p. 82) when they observed that the only complete solution to the problem

of missing data is not to have any. The following method leads to correct
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analyses and interpretation of designs which,are (1) planned as non-orthogonal

or (2) which become non-orthogonal due to the random processes of nature.

Models and the method of least squares.

Having decided, either by choice or default, to employ the method of least

squares and having determined the design of the experiment on the basis of a

belief as to the nature of the world (in some idealized sense), one is left

only with the selection of possible models and model comparisons. We first

note that the models selected are logically independent of the observed

numbers of observations per cell. While obviously the analysis will be

affected by the cell frequencies, the experimenter is free in the design of

the experiment to choose the numbers of observations per cell, constrained

only by considerations of efficiency and convenience. The models themselves,

the representations of our belief in the nature of the world, are not expressed

in terms of the number of units in any subpopulation--indeed, the models being

considered are usually in terms of infinite subpopulations. Since the model

itself is free of population size, the cell frequencies can hardly matter

in terms of the correctneis of the model. But then why all of the concern

about non-orthogonal,analysis'e

The problem of non-orthogonal analysis really occurs at the level of

model comparisons and proper interpretation of the results of such comparisons.

As We shall see, the difficulty arises from the methods available to assess

the "correctness" of the several models being compared.

One-wax ANOVA

Letus:firstconsiderak-groupone-wayANOVAwithn.observations in each

group; a design which is usually thought to offer no problems, even with unequal

cell frequencies. It is our goal to make inferences concerning the population

means in the several treatment populations. These inferences will be based

upon the observed sample means, the best unbiased estimates of the population

means if we make no additional assumptions about the populations beyond those

of normality and homogenity of error variance. Li



One-way ANOVA is commonly treated as the comparison of two models

(I) Yij wEct +e

(II) Y
ij

u+e

If model II is the correct model, the means for the several populations must .

be exactly the same and the best unbiased estimate (the least squares estimate) of

each of them is the common mean of all the observations. This estimate has

variance a
2
/En where 0

2
is estimated by the conunon-.vithin-cell variance.'

If model I is correct, the best unbiased estimate of any population mean is the

sample mean for that population'which has variance a 2
/n . The best unbiased

estimate of any difference (contrast) in the population means is the difference

(contrast) in the sample means. This is true regardless of the number of ob-

servations obtained from any population since knowing one population mean

tells one nothing about any other population mean. (Note that if Model II

is correct, estimates of means obtained from Model I are unbiased but have

variances which are larger in the ratio Enk/n.d.
kl-

The number of observations obviously does effect the variance of the

estimates of population means and must also affect the power of any tests

Of significance. For any two groups (j and k) the variance of the mean diff-

erences is the weighted sum of the variances (of means) 0
2
/n+0 2

/n
k.'

If

the total number of observations for the two groups is held constant, this

variance is a minimum when the cell frequencies are equal and the power of

the test of the difference of these population means will be a maximum in

this case. Similarly it can be shown that the power of the test of equality

of all the population means is a maximum when all the cell frequencies are

equal. Thus the effect of, non-orthogonality in the one-way ANOVA is in terms

of the power of the test--not in the obtained estimates nor in the test of

their significance. 4 2
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Two-Ely. Analysis of Variance

The situation is not nearly so simple when we move to the case of factorial

experiments. The additional problems encountered in the factorial case are

illustrated by the following example, intentionally constructed to represent

an extreme case.

Consider a two-way ANOVA for which we have observed the cell means

with the cell frequencies nij as given in Table 1. Assume that the estimated

within-cell (error) standard deviation is 15 in each cell (i.e., MS 225).
error

A
1

Table 1

Cell Means and Frequencies for Two-way Example

Cell Means,

1 2

10 10

2 20 20

A
1

Cell Frequencies, n
ij

1

25

2

2

2 2 25

As an exercise, let the reader:consider the answers to the following

questions before proceeding further: (1) What can one say, given the above

information, about the presence of any main effects or interactions in this

experiment? (2) Given the answer to this question, further consider what

one would suppose to be true of the populations?

In our experience, relatively sophisticated.psychologists and graduate

students will not necessarily answer these questions in a consistent manner.

We believe that the customary training in psychological statistics will lead

many to base their answers to the first question on the means alone judging

that there is an A effect but no B effect or interaction. The obvious in-

equality in the numbers of observations per cell will be troubling and the
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sophisticated respondent will certainly observe, in response to the second

question, that the main diagonal means are much more stable than the off-

diagonal means.

If one asks the further question, "What would and should an ANOVA

analysis tell you about the true populations?", we are at the heart of the

problem of non-:orthogonal ANOVA. Surely any ANOVA, orthogonal or not, must

give information about the population means. It is not reasonable that un-

equal numbers of observations in cells will alter the character of this in-

formation, although it will certainly alter the precision of any statements.

Looking at the sample means of Table 1 it is apparent that if the popu-

- lation means are the same as these sample means (and this is our best guess),

there is only an A effect present. Our statements must, however, take into

account the sampling variability of these sample means, Consider, for a

moment, the 95% confidence intervals (Table 2) which might be generated about

the four observed sample means. Since the samples themselves are independent

random samples from four possibly different populations, the confidence in-

tervals are, in the same sense, independent. From these confidence intervals

A

1

2

Table 2

95% Confidence Intervals on Sample Means1

1 2

3,9716.03
- 1-

-11.32<p
- 12

<31.32
-

-1.32<112l<41.32 13,97<1122<26.03

1
These confidence intervals are based upon the pooled MS error with 50 d.f.

4 4
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ye may see it is reasonable that our sample could have come from a set popu-

lation with any of the following patterns of means (Table 3); These are but

Table 3

"Reasonable" Population Means

1 2 2

A-
2

1 2

_10 10 1 10 20 10 20

20 20

A

2 10 20

.1111

30 20

three among many possible sets, but notice that we would Consider the first as

one in which there was a main effect of A, but no B or AB effects; the second

would be considered as an example of a main effect for B but no A or AB effect;

while the third would be indicative of a situation with interactionand a main

effect.

We thus believe that the conclusion one should logically draw from these

sample values is that 'there are some effects, bUt that the data do not per-

mit a definitive statement as to which. Welurther believe that a proper

ANOVA should lead one to draw-such conclusions.

An incorrect "approximate" analysis

Let us now consider an erroneous analysis which we believe many psycho-

logists might be inclined to perform. This is an analysis of each factor

collapsing over the other. Although it does have some intuitive appeal and

indeed may be useful im:conjunction with other analyses, it will, in general,

lead to incorrect conclusions about the population means whemused alone.

Suppose we collapse the design given the Table 1 over the B classification

leaving us with two levels df A with mean values of 10 and 20 as shown in the

marginal values of Table 4. A one-way analysis would then lead to the con-

45



elusion that there_-.:z a significant main effect of A (1)=.017). If Ve then

collapse over levels of A we have the levels of B with means of 10.7 and

Table 4

Means collapsed over Classification

1

1 10 10 10
A

2 . 20 20 20

19,3

19.3 suggesting a B effect (p=.042) as well as an A effect. We would call

these analyses, respectively "A ignoring B" and "B ignoring A". -The use of

the phrase "A ignoring.B" is meant to indicate that in our two-way.table we

"ignore" the B classification and treat the design.as if it were only a one-

'way classification with levels of A. Observations for a given level of A are

considered replicates regardless of whether or not they correspond to the same

level of B (that is, we assume no B or AB effects). When there is no B or AB

effect, the observations at the several levels of the collapsed factor are, in

effect; replicates sinte the variability between levels of B is of the same

order of magnitude as the variability within a level'of B. If however, in a

non7orthogonal design, there is a B or an AB effect, the estimated magnitude

of the.A effect (ignoring B) will, in general, be affected by the number of

observations in the cells and does not represent an unbiased estimate of any

pOpulation value. Only when there are equal numbers of observations in the

cells will the estimate of the magnitude of the A effect be unaffected by the

number of observations in the presence of a B or AB effect.

In general, when we are estimating the magnitude of effects, we may safely

ignore other effects in the design only when they are null or when their esti-

mates are independent of the effects in whiCh we are interested. The first
4 6
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condition (that of null effects) depends only upon the state of nature; the

second (independence of estimates) depends only upon the actual design of the

experiment. The conclusions drawn from this "ignoring" analysis of Table I will

be incorrect under the (plausible) assumption that there is only one main

effect in the population responsible for the results.

For the general non-orthogonal case a different method is necessary in

order to estimate treatment effects without bias and to provide unbiased tests

of significance. These are tests of "A eliminating B" and "B eliminating A"

with corresponding estimates of the effects. In.essence these which

take into account and eliminate the confounding effects of other factors when

they are present. Thus a test of "A eliminating B" "removes" any confounding

effects of factor B. If there is no B effect (i.e., it is null the popu-

lation) or if the design is orthogonal, there is MD confounding dme to B and

nothing to eli=inate; hence the test will be identical to tau4t of 'A ignoring

B". The test 1:31 "A eliminating B" answers-the question: gtmer. the possibility

of a B effect is there evidence for an A effect in addition I..= any B effect

which might be present. On the other hand, the test of "A ignoring B" in general

answers the question: Is there any evidence for an A effect assuming there is

no B effect or ignoring it if it is present. The estimate of the A effect

corresponding to the test of "A eliminating B" is unbiased regardless of the

existence of any B effect or of orthogonality in the design. It is always

the "correct" estimate.

Model Comparisons and Tests of Effects

The more general "eliminating" method described above involves fitting a

model allowing for both A and B effects and then comparing the fit (i.e., the

quality of the model) to the fit of a model omitting one or more of the effects.

For example, consider the following models which "predict" the response of a

subject in the ij cell of a two factor design

4 7
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ijimp+0

+0j+yij+t

Yijoip41/i +Oj+c

III. Yijp+
j+c

IV.

V. y
ij

Model I is the most complete model for a two factor design; it allows

for an overall level (4), an effect dependent upon the level of factor A (mi),

an effect dependent upon the level of factor B (0 ), and an interactive effect

dependent upon the joint, non-additive effect of the combination of the

ith level of factor A mith the jth level of factor B. The other models are ob-

tained from the first by dzopping the. 11-11-Praction term and possibly one atboth

of tbe-mafal effects. Thosal..aocustomed to only orthogonal ANOVA will be to-

clineLto.:regard model I az_zapable of providing the parametric estimatesrneeded

for tMe other models, but this is not So in general. Each model represents a

separate least squares estimation problem and.may provide different estimates

of the parameters involved. Only in the case of orthogonality will the esti-

mated parameters for the different models be necessarily the same. LikeWise,

it is only for the orthogonal case that the estimated parameters within a model

will be statistically independent (unconfounded) of one another. This is the

real meaning of orthogonality.

.We would begin the analysis of a two-way factorial, either orthogonal or

non-orthogonal, with the test of interaction. Our feelings of parsimony dictate

a preference for a main effects model if it is consistent-with the data and

so we would wish to compare a model allowing for main effects and interaction

(Model I) with one only allowing for main effects (Model II)--that is testing

AB eliminating A and B. In a two factOr complete factorial experiment this is the

usual test of the two-way interaction which is routinely employed. If we are

able to reject the hypothesis of null interaction effects our usual procedure would-

be to stop at this point with an interaction model. If, however, we are unatle



to reSe=n this hypothesis (i.e., conclude that interaction effects are non-

significant) we would wish to proceed with tests of main effects.

When we allow the possibility of both an A and B effect in the population

we are specifying a series of tests involving model II. Thus to test either

effect we must test-I:tin that model, implying an alternative model in which

it is absent. To test for an A effect we compare. model II to model III, while

to test for a B effect we compare model II .to Model IV- In each of these

tests we are allowing for the:possible existence of the effect not being

tested. In testing A we arm:asking the question "given the possible existence

of:B in.our model, do we need A?" This is the meaning of the term "A elimi-
2.,

nating_B".

.amr_judgment as to whimh model to accept is based upon the relative

magni-t-des of the sum of squared errors produced by the competing models and

the F team gives a method fmr testing whether the models differ in this res-

pect. This procedure is always correct, in either the orthogonal or non-

orthogonal case. In the orthogonal case it will produce results identical

to those produced by the ordinary computational methods.

Different tests of A and B effects may be appropriately cbtained by

beginning with different model assumptions. If we assume that there is no B

effect, model IV is an appropriate model and we would compare it to model V in

order to test the existence of an_ A effect in model IV (i.e., without regard

to the exlstence of a B effect). This test of "A ignoring B" is not a proper

test unless model IV is the edrrect model, i.e., unless there is no B effect.

Similarly we may test B ignoring A by comparing model III against model V, but

here the test is proper only if model III is appropriate, i.e., there is no.

A effect. In the case of an orthogonal design these tests will give us the

same results as these tests involving model II, but while the results are com-.

putationally the same (due to independence of the.estimates of the parameters

involved) they are not logically the same in terms of comparing the same models.

4.9
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An_Example

Let us now apply this.method to the data of Table 1 using. the MAMOVA computer

program (Cramer, 1967). We may summarize all the relevant statistical tests in

the following ANOVA Table (Table 5):

Table 5

ANOVA Tables for Complete Analysis of Data in Table 1

Source df SS MS F P

AB ..1 0.00 0.00 0.00 1.000

A eliminating B
,

1 370.37 370.37 1.646 .205

B eliminating A 1 0.00 0.00 0.00 1.000

A ignoring B 1 1349.99 1349.99 5.999 .017

B ignoring A 1 979.63 979.63 4.353 .042

yithin Cells 50 11250.00 225,00

It may be clearly seen that there is no evidence for an interaction;

however, the small numbers of obServations in two of the cells makes the.power

of this test rather low. Tests of A eliminating B and B eliminating A are

clearly non-significant, while the tes,ts of A ignoring B and B igftoring A,

given previously, are both significant. All five of these statistical tests must

be considered in order to draw proper conclusigns about the population means.

The tests al A eliminating B and B eliminating A do not provide us with any

evidence regarding the existence of either A or B effects (although they clearly

imply that both effects are not necessary jointly), while the tests.of A ig-

noring B and B ignoring A separately provide us with evidence for either effect,

depending upon which test we consider. Keeping in mind the models which are

compared, the "eliminating" tests tell us that we have no evidence for one

effect in addition to the other. We must conclude then from this statistical

analysis that there must be some effect, either an A or B effect, but we

cannot tell which, and there is, clearly, no evidence to suppose that both

exist. This is in line with the previous conclusion obtained by informal

arguments earlier. It should be noted that because of the substantially dis- 50



-50-

proportionate numbers mf observatMons in cells, the power e2 the:eliminating

tests is rather low and the effects are highly confounded. :ndeed, this ex-

ample approaches closely the completely =onfounded case in wbrich all observations

would be in the A
1
B
1
and A

2
B
2

cells. In the completely con±munded case, the

, one degree of freedom between cells could be attributed to mdther an A effect

or a B effect with no possibility of deciding between them.

Interpretation of Results

The patterns.of possible results from the analysis ofaz two factor

design with no interaction are given in Table 6. Pattern 1.:Indicates that

Table 6

Pattern of Results--Two-way Factorial without Interaction

Pattern

Test 1 2 3 4 5 6 7

A eliminating B s s ns ns ns ns ms

B eliminating A s as s ..vz -as ms ns

A ignoring B x x x ns s s ns

B ignoring A x x x xis s ns e

s=significant ns=nonsignificant xpArrelevant

A and B are both needed in the model since, given the presence of one, the

other is still significant. Patterns 2 and 3 both Mustrate_cases for which

a second main effect is not needed given the inc-1-7=-f-on of the other, but the

significant effect must be included (i.e., From Pattern 2 we would retain the

A effect, from Pattern 3, the B effect). Pattern 4 is the case for which no

main effects are included in the final model. These constitute the standard,

easy to intercfret cases and are the only cases which may arise from an ortho-

gonal design. The remaining patterns are unique to the non-orthogonal case.

Pattern 5 is the seriously confounded situation presented earlier in which only

one effect need be included in the final model, but due to confounding the

choice of which effect to retain is indeterminant. Patterns 6 and 7 occur

only iv situations in which there is very serious confounding in the design.

5
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The significant main effect should be included in the final model. In these

circumstances it is particularly important to ask why such a seriously con-

founded design was produced aUd. to carefully attend to the implication this

bas to the phenomena being investigated.

Recommenxied Tmocedure for a two-1.1.Et non-orthogonal. 1.10,1m

On the basis of the material developed to this point we-suggest the following

procedure.be employed in the analysis of a non-orthogonal two factor design.

sbould be emphasized that this.procedure is for the logical flow of decisions

and conclusions which are made in such an analysis,.but does not dictate the

actual order in which the computations need be performed. Indeed, in most of

the standard.computer programs available for such an analysis (e.g., HANOVA;

Cramer, 1967) the required tests would be produced in a rather different order.

It

However, once the results of all required tests are aviilable, we would suggest

proceeding as follows:

A. Begin with the full model including main and interaction effects.

B. Test for a significant interaction (AB eliminating both A and B), if this

test is significant no tests of main effects are appropriate; however, one

might wish to test certain contrasts in the cell means to aid in inter:-

pretation of the results. If the test is non-significant eliminate the

Yi terms from the model and proceed to step C for tests of main effect.

C. Test A eliminating B and B eliminating. A

1. if both tests are significant adopt the model Y
ij

opid
i
+8

J
2. if only one df the two tests is significant adopt the model Yiyiu4ai+c

(if A eliminating B is the significant one) or Yii=u+Bj+e (if

B eliminating A is the significant one).

3. if neither is significant proceed to D.

D. Test A ignoring B and B ignoring. A

Lifbotharesignificantretaineithera
3

iorB.,but not both in the final

model--the choice is indeterminaat. In this case additional experimental

evidence will usually have to be obtained before much could be said

about the meaning of the experiment.

52
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2. if only one of the two tests is-significant, the significant effect

should be retained, but the cautions referred to in ihe discussions

of patterns 6 and 7 should be diligently adhered to.

3. if neither test is significant no main effects should be included in

the first model, i.e.,;adopt the model y

Extension t0 1:11sas Order pesigns

As a non-orthogonal design becomes more complex through the inclusion

of additional factors the proper analysis becomes far more tedious although

the basic logical structure remains the solle. In all cases we are attempting

to find the simplest model .which adequately fits the data by comparing com-

peting models. As the number of factors increases the total number of

potential tests (model comparisons) increases very rapidly. For a q-factor

design the total number of potential tests is given by

c 2[(cici-1)]

i=1
i

where
q
C is the number of combinations of q things taken i at a time.
i

most cases, however, not all tests will be performed.

Because of certain symmetries which exist in the three factor case, the

extension of the two factor procedure to bigher order designs is most easily seen

through the analysis of the three factor design. In general the process

begins by determining if the triple order interaction is necessary. If it

is.not,one proceeds to determine how many and which second order inter-

action, if any, are necessary and finally, in the absence of second order

interaction, how many and which main effects are necessary in the model.

As a general point it should be noted that when a second order inter-

action is included in a model (say the ay term), the main effects implied

by that term (in this case a and y) will be also included; the other main

effect.terms (in this case a) May or may not be needed in the model. To

'determine if other main effects should be included requires a separate set

of tests. 53
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Procedure for a three factor non-orthogonal design.

The process begins by tentatively adopting the full model, Yijoil+ujili+yk+

(ao)ii+(ay)ik.+(ay)ve(aBy)ijk and then eliminating unnecessary terms. First

one would test the triple order interaction, ABC, eliminating all second order

interactions and main effects, i.e., asking the question--given the lower order

effects do we need the triple order interaction? If the test of the ABC inter-

action is significant, one would accept the full model and proceed, if desired,

to test specific contrasts in cell means to aid with interpretation. If on

the other hand the triple order interaction is non-significant indicating

that the effect is not required in the model, given the possibility of lower

ordnreffects,onewoulddroptheterm from the model and would proceed"Yijk

to investigate the second order interaction terms in order to determine how

many and which terms to include in the model.

At this point in our discussion, however, we shall consider the pro-

cedure for main effects rather than second order interactions. We do this

because sou4 of the concepts carry over directly from the two factor design

and, given certain symmetries in the three factor design, it is possible to

then directly apply these concepts to tests of interaction terms. We must

emphasize that in the actual use of the process, tests of second order inter-

action would always preceed tests of main effects.

On notation

In order to simplify the naming of various tests (model comparisons) in

the discussion to follow the following notational scheme will be used

(1) the symbol I will be used to indicate eliminating

(2) the absence of a term to the right of the
I symbol of the same order

as the term on the left of the I implies that term is ignored

(3) it is assumed that all lower order terms are eliminated from higher

order terms.

5 4
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Thus, for a three factor design with factor A, B, C

AIB C implies the test of A eliminating B and C

AIB implies the test of A eliminating B and ignoring C

A implies the test of A ignoring B and C.

ABIAC,BC implies the test of AB eliminating AC, BC, A, B, and C

while AB implies the test of AB ignoring AC and BC but eliminating A, B, and C.

-Tests of Main Effects

In testing for main effects we are trying to determine how many effects

must be included in the model and which ones they are. The only circumstance

under which it would be necessary to include all of the main effects is when

each main effect is significant eliminating the other two, i.e., when the tests

AIB,C; B1A,C; and CIA,B are all significant. If only two of the three tests

of main effects eliminating both of the others are significant, the two signi-

ficant effects would be retained while the third would be deleted from the

model. Thus if all three of the tests or if two of the three tests are signi-

ficant our conclusions are quite direct--retain the significant effects.

Uhen, however, only one or none of the three tests is significant the

situation is somewhat more complex. If only one of the main effect terms

eliminating the other two is significant, say AIB,C, the significant term

should clearly be retained; however, it may be desirable to retain one of

the other two effects. Since we have already decided to keep the A effect

we need ask do we need either the B or the C effect given the A effect, i.e.,

to test BIA and CIA. If neither of these tests is significant then clearly

neither effect needs be present given the A effect in the model. If one of

the two is significant, say CIA, that term,.C, should be included in the

final model along with the A term. Should, however, both be significant,

we are in an ambiguous situation. Previous tests have indicated that all

three effects are not needed in the model and that the A effect must be in

the model, therefore our choice between B and C is completely indeterminant.

.55
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The potentially most complicated situation obtains when rone of the three

"doubly eliminating" tests are significant. It is still possible that one

or two effects should be included in the model. In the two factor

design, we reasoned that the significance of both AIB and BIA indicated that

both A and B should be included. In the three factor design there are three

such pairs of tests involving A and B, A and C, and B and C (i.e., AIB and

BIA; AIC and CIA; and BIC and CIB). The joint significance of any one of

these pairs of tests indicate the need to include the relevant pairs of

effects, but only two such effects may be included, our previous tests having

excluded the possibility of all three effects being included in the model.

If more than one pair of these tests shows significance we are uncertain as to

which pair of effects to include. This is analogous to the two factor case

where we were uncertain as to which of the two main effects to include. Should

no pair of effects be significant we are then left with the possibility

of including only a single effect in the model. Thus if any one effect were

to appear significant (e.g., if the tests of AIB or AIC were significant)

we would include it in the model. Should none of the "single eliminating"

tests be significant we would then examine the "doubly ignoring" tests, A, B,

and C as these may still indicate the necessity of including a-single main

effect. If none of these tests are significant we would conclude that no main

effects were necessary and would be left with the model Yijopi-cijk. If but

one of these tests is significant, that effect would be included in the final

model. If two or more of the "doubly ignoring" tests are significant we are

again in an indeterminant situation and may arbitrarily choose one of the

significant effects for the final model, but the choice is completely arbitrary.

Application to two-way interactions

The application of the "main effect procedure" to twoway interaction is

straight-forward if we but note the following symmetry which exists in the three

factor case. Since there are three two-way interactions and three main effects

5 fi
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in a three factor model, the pattern of tests for main effects and for two-

way interactions are exactly the same. Corresponding-to tests of main effects

A, B, and C there are tests of interactions AB,-AC, and BC. For every main

effect test, say A1B,C, there is a corresponding test AB1AC,BC. Hence, the

the above procedure is first applied to the three two-way interactions eliminating

all main effects and other two-way interactions, i.e., AB1AC,BC, ACIAB, BC, and

BC1AB,AC, and would then be followed with parallel tests as needed. Should the_

conclusion be that.there are no interaetions, the procedure would then be

applied to the main effects. If there are significant interactions, the factors

involved should be also included as main effects, as noted earlier. Should

only one two-way interaction be included, the question of retaining the uninvolved

rlin effect should be considered. To do this the test of that effect eliminating

the other two main effects and the significant interaction should be performed,

e.g., if it were the BC interaction that were significant one should perform the

test A1B,C;BC in order to determine if the A effect should be included in

addition to the B, C, and BC effects.

Some additional comments

The methods discussed for both the two and three factor cases have

proceded on the assumption that there is no a priori preference for explaining

the data in terms of one factor above any others. Such a preference may exist

in designs such as randomized blocks where we would customarily not even

consider the test of treatments ignoring blocks; we assume that there are block

effects and are willing,to consider the presence of treatment effects only

if the test of treatment eliminating blocks is significant. Similar considerations

may apply in a wide variety of cases and may simplify the process discussed here.

Another consideration is the number of tests involved in the complete

procedure. Some of these tests will be highly correlated and some will be

independent depending upon the degree and pattern of non-orthogonality. The

N7
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,extreme is illustrated by the two factor orthogonal case in which the tests A

and B are independent while A1B and A are identical. In the case of lack of

knowledge of likely effects one may perform preliminary combined tests such as

a test of pooled interaction prior to doing individual tests. This would have

to be moderated, however, by any knowledge which would, a priori, suggest the

existence of specific effects.

Overall, Spiegel, and Cohen (1975) have considered some of the problems

discussed above and have arrived at very different and demonstrably much more

lindted conclusions. Since this is so relevant to balancing,

we will indicate the serious flaws in uheir "proper" generalization of orthogonal

ANOVA

An Analysis of the Recommendations Presented by.Overall Spiegel, and Cohen

Overall and Spiegel (1969) considered three methods of analysis in nonor-

thogonal ANOVA without favoring any one as being the appropriate one. Overall,

Spiegel, and Cohen (1975) then argued that one of the three methods is indeed

the only proper one to use. In describing how they arrived at this conclusion,

they note that the strategy that "appeared most often to be recommended in

applied statistics texts involves basically a 'main effects' model with tests

for interaction effects included as a safeguard against departures from additivity

(Rao, 1965; Snedecor & Cochran, 1967; Winer, 1971). The analysis proposed by

Appelbaum and Cramer (1974) follows this logic" (p. 184). The argument against

this approach, as developed by Overall et al., rests upon a single principle whinh

we uelieve to be correct and proper, and a single procedure which is easily

demonstated to be erroneous.

The principle is "that the method for the analysis of variance of data from

nonorthogonal designs should estimate the same parameters and test the same hypo-

theses as can otherwise be estimated and tested in a balanced analysis of variance and

5 8
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experimental design involving the same factors" (p. l84). This

is consistent with our views since in our 1974 paper we said,

"Having decided to employ the method of least squares...one is

left only with the selection of possible models and model com-

par5.sons. The models selected are logically independent of the

observed numbers of observations per cell" (p. 336). The key

point which Overall et al. ignore is the choice of model. Given

a model, ye would argue that our methods test the same hypotheses

and estimate the same parameters whether there are equal numbers

of observations or not. In the absence of a model we believe it

to be meaningless to talk of estimating parameters, much less

testing them.

The procedure Overall et al. propose for verifying that a

particular method satisfies the above criterion is "to generate

data for orthogonal and nonorthogonal designs involving exactly

the same a., Oi, and (a)ii and then to determine which method of

analysis yields the same parameter estimates in the orthogonal

and nonorthogonal cases." This procedure is ill-defined since it

does not state how such data should be generated. If the example

presented by Overall et al. is meant to make the procedure pre-

cise, it is clear that their procedure is patently inappropriate.

Overall et al. present data arranged in a 3x3 ANOVA with thre

observations per cell and then duplicate the observations in

certain cells to make the design nonorthogonal. They state that

"the reader will appreciate that duplication of certain scores

does not invalidate the analysis of variance"(p. 184). Quite

the contrary, it does invaiidate the Wrialysis of variance since

59



-59-

the observations are -...learly not independent in the various cells.

Furthermore if they claim (as they appear to) that the addition

of observations should not change the estimates of the parameters,

it must be the case that the method ignores, in generating esti-

mates, any information in the additional observations. How can

a method that ignores such information be a good method?

We have analyzed the data given by Overall et al. and we

suggest that even if one ignores the question of independence and

follows the procedures we have advocated he will not perform any

tests of "main effects" for the simple reason that there is a

significant interaction in the'data which they present. (A de-

tailed discussion of the problems involved in testing and estima-

ting "main effects" in the presence of an interaction follows.)

Analyzing their data with the additional observations, we obtain

an F value of 6.4 for the interaction which is significant beyond

the .001 level. Given this result we would probably wish to look

at A effects for given levels of B, or B effects for given levels

of A, or poseibly individual interaction contrasts. We doubt

that we would have any interest whatsoever in any of the para-

meters that Overall et al. obtain or in any of the main effect

tests they perform. Indeed, we have made in our earlier

specific -recommendations as follows:

1. Begin with the full model including main effects and

interactions effects.

2. Test for a significant interaction; if this test is

significant no tests of main effects are appropriate;

however, ne may wish to test certain contrasts in the

cell means to aid in interpretation of the results.

6 0
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Procedures for the Case of Significant Interaction

Since, in our previouswork, we were not specific about

what we would do in the case of a significant interaction, it

may be useful to consider our interpretation for this example.

The cell means and numbers of o'Dserstions are as shown in Table

T. Cur standard ANOVA for an interactive model gives us an esti-

mated standard deviation of 1.93 based pn the within cells sum

of squares. The marginal means shown are the unveighted means

of the cell means for rows and columns. The significant inter-

action (F = 6.4, p<.001) tells us that there are effects of both

A and B, but that the A effects are different for different

levels of B just as the B effects are different for different

levels of A. It seems clear from examination that the inter-

action is due primarily to the value 11.7 in cell 13. If we

delete that cell we can obtain the test of that portion of

interaction remaining with three degrees of freedom rather than

four.
2

On reanalysis, with the 13 cell deleted, we find that

the interaction is no longer significant (p=.27), strengthening

the belief that this one cell is responsible for the significant

interaction. The test of A eliminating B is highly significant

(p.001) while the test of B eliminating A is marginal (p=.10).

It appears then that if cell 13 is dropped there is definitive

evidence only for an A effect.

2
Analysis of variance programs such as MANOVA (Cramer, 1967)
allovLfor the complete deletion of specified cells making such
an analysis a simple matter.
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As an alternative or supplementary analysis, we have analyzed

the simple effects of A for each level of B and the simple effects

of B for each level of A. These analyses also confirm what in-

spection cf Table 7 suggests; the simple A effects for levels one,

two, ane three of B are highly significant (p=.009, .001, .001).

The simple B effects for levels one and three of A are significant

(p=.001, .03); the simple effect of B for level two of A is not

significant (p=.81).

On Main Effects Mar inal Effects, and Interaction

Additional insight into the nature of this problem can be

gained through a more careful consideration of the problems of

testing and estimating "ma n effects" in the presence of interac-

tion. At this point it is necessary to introduce a basic logical

distinction betifeen two concepts which have, unfortunately, come

to be held as virtually synonymous--a main effect and a marginal

effect. By a main effect we mean the effect of a particular

experimental treatment or state of nature which is the common

and consistent effect of that treatment or state of nature irres-

pective of what other treatments or states of nature it is com-

bined with. By a marginal effect we mean simply the average

effect of the experimental treatment (state of nature) averaged,

in some sense, over all occurrences of that treatment. These

two concepts are equivalent only in the noninteractive model.

In the case of a model in which there is an interaction, the two

concepts are quite distinct
; in fact, under the interactive model,

the concept of a main e--fe_t does not apply, for an interaction

implies that there is no consistent effect of the treatment,
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Table 7

Means and Numbers of Observations for Data from

.Overall, Spiegel, and Cohen

A2

A
3

B
2

6.0 5.7 11.7

6 3 3

6.3 6.0 5.3

3 6 3

10.3 13.0 10.0

3 6 6

Table 8

7.8

5.9-

Illustration of Marginal Means for Interactive Model

B
1

B
2

w=1 w=0

10 20 15 10 20

20 10 15 20 10

Table 9

Illustration of Marginal Means for Non-interactive Model

B
1

B
2

w=1 W=0

10 20 15 10 20

30 35 30 40
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but rather that one must consider a treatment in combination

with some other treatment(s) in order to assess its effect.

This distinction can also be seen through the concept of a simple

row (or column) effect which is commonly defined as the difference

between a cell mean and its corresponding row (or column) mean.

If, lor a given factor, the simple effect of the several treat-

ments s-rould be identical for all levels of other factors, this

constant 74imple effect is the main effect.

Given then that one is operating with a model which contains

an interaction term it is, at best, misleading to speak of main

effects, for one is considering marginal effects. These marginal

effects will be averages of cell means across rows or columns of

the design. There is no particular reason for using a simple

average rather than a weighted average. If the model is truly

interactive the weights used will have a substantial effect on

the marginal effects. Suppose, for example, the cell means are

as shown in Table 8 for a two by two ANOVA. If we define a

marginal A mean as
a ft
Yl. = w Y + (1-w) Y

i2

we find that the difference in marginal means for A will be 0,

-10, or 10, depending on whether If is .5, 1, or O. For the data

from a noninteractive model shown in Table 9, we find that the

difference in marginal means is 20 regardless of what the weights

are.

The tests of main effects proposed by Overall et al. in

Method I are in fact tests of equally weighted marginal means

for an interactive model. It can also be shown that these tests

6 4



are equivalent to the method of unweighted squares of means pro-

posed by Yates (1934) and discussed by Bancroft (1968). These

are tests of the equivalence of row or column .marginal means

U. = ZU /b

and

U. = Eu. /a

These particular marginal means are but one of many possible sets

of marginal means which can be constructed and it is by no means

clear that this is the most desirable set to test in any parti-

cular situation (see Appelbaum & Cramer, 1975).

We believe then that the above analyses reveal essentially

everything there is in the data. As we have indicated, the tests

of main effects recommended by Overall et al. are equivalent to

the tests of equality of marginal means as we have defined them.

We do not find these tests very interesting since the marginal

means represent only average effects for rows and columns, while

the significant interaction tells us that these average effects

are different from the actual effects for each row and column.

The marginal A effect is significant (p=.001); the marginal B

effect is not (p=,23).

We would argue then that the example presented by Overall

et al does not bear on the validity of the Methods we have advo-

cated, fur the simple reason that there is an interaction present.

Furthermore it seems to us that their analysis of "main etfects"

is not directed to the questions that psychologists will typi-

cally wish to address. We could of course modify their example

'so that the interaction is nonsignificant. Then, as we have
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noted, it would violate the assumptions of independence- Their

procedure is simply not valid in principle.

Estimation and the Overall et al. Criterion

Overall et al have erred in assuming that if two methods

estimate the same parameters, they nust yield the same estimates.

This is obviously false. To est.mate a population mean we could

use a sample mean or simply use the first observation, discarding
the others. Both the sample mean and the first observation are

unbiased estimators of the population mean, but they will, in

general, yield different estimates. The sample mean is better

since it will be closer to the population mean on the average.

This precision of estimates is the crucial distinction between the

methods Overall et al. advocate and the methods we advocate.

In our 1974 paper the topic of estimation in the nonorthogo-

nal ANOVA did not appear since we did not believe that there vas

any disagreement as to what was appropriate. We now feel that

this topic does require some attention.

The estimation problem is easily and completely solved once

one decides upon the model which one believes applies to the real
world. The usual role of significance testing is to determine,

based upon the data of the real world, which model is the most

reasonable one from among a set of competing models. Having

made a decision as to which model obtains, one may then proceed

to estimate the parameters of the model--but estimation may occur

only in the context of a particular model.

Let us now consider one possible model--the two factor

interaCtive model
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y = P + a + 8 + y
ij (1)

It is a trivial matter to obtain a set of least squares estimates

of the parameters of this model. We say "a set" because there

are infinitely many sets which are equivalent in the sense that

they will yield identical predicted values Y. It is, however,

a standard practice to impose additional constraints upon the

model in order to obtain a unique set of estimates. The purpose

of the constraining system, however, is solely computational con-

venience. It is obvious that the very best we can do in this

model is to predict the cell means exactly, since there are no

parameters which are unique to any single observation. Any two

models which predict the cells means exactly must be equivalent.

It is also a consequence of the mathematics of the system that

any model which has as many independent parameters as cells must

predict the cell mean exactly.

There exist infinitely many constraining systems which may

be applied to the full interactive model in order to produce the

computational determinacy desired. The simplest of these is

p = a = = 0

leaving the model

Yij *leis] + e

(for all i and j)

( 2 )

In this case the Least Squares estimates of the yij are simply

the observed cell means,

The more usual (conventional) constraining system, however,

is.
Emi Eaj = Eyij = Eyij = 0

( 3 )
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If the design has a levels of factor A and b levels of factor

B, there are then (after the imposition of the constraints)

I + (a-1) + (b-1) + (a-1)(b-1) = ab independent parameters which

is also the number of indepenaent parameters in (2). his equals

the number of cells in the design, and it then follows that the

model constrained in this way must be equivalent to that in (2).

For those familiar with the matrix apprnach to the analysis of

variance this result is easily seen from the fact that the model

matrix for this constrained design must have ab columns.

It is also a rather trivial matter to directly write the

least squares estimates of the parameters of the interactive

model constrained by (3). They are

1.1 =

yu --
ij 1.

-
.j

+

where Y is the unweighted average of the cell means while Y

awl . are the unweighted average:: of the cell means for row i.j

and column j, respectively. Substituting these estimates into

(1) giNes

A

y = p i Bj Yii

. ij
again showing the equivalence of (1) and (2).

We thus see that estimation in the interactive model is

rather trivial, with the estimates of the parameters being simple

linear functions of the observed cell means and free of the n
ij

.
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In point of fact there is really no gain in talking of

estimating parameters in (1) since it is equivalent t (2) which

is a cell means model requiring no constraints. We have a x b

populations (one per cell) and the only parameters of interest

are their means and their common variance.

The situation, in general, is not nearly so simple when

there is no interaction, that is, when estimation proceeds within

the model

+B +c (5)

In general we would have to solve a set of simultaneous least

squares equations in order to obtain estimates of parameters in

(5). An exception occurs, however, in the orthogonal case in

which the estimates of p, ai, and Bi have the form as in (4).
In the more general nonorthogonal case, there will again be

infinitely many solutions to the unconstrained least squares

equations although estimates of u + ai and u + Bi will be

unique.

An interesting result of least square estimation in (5) is

that the estimates obtained for u, a, and B from model (1) yield

unbiased estimates of Y
ij

in (5), but the estimates are less

precise, that is, they have larger variances than the estimates

obtained from (5). For this reason it will be desirable to

estimate the parameters of (5) when we have accepted (5) as the

true model rather than use the estimates from model (1).

We would agree that the procedures advocated by Overall

et al. test the same hypotheSes in both the orthogonal and

nonorthogonal case; further, w, agree that they are valid tests
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of certain hypotheses, but we doubt that they are hypotheses of

particular interest in either the orthogonal or nonorthogonal case.

We believe that an informed statistical analyst would not perform

a test of main effects in the presence of a significant inter-

action in the orthogonal case; yhy then in the nonorthogonal case?

The Case of Nonsignificant Interaction

Of course, we can only know in a probabilistic sense if

there is truly an interaction present in nature. We must in the

final analysis rely on the results of statistical tests to direct

us to reasc,nable models upon which to bate our estimation proce-

dure. This then leads us to ask what behavior is appropriate

when the data dictate an interaction free model and to consider

the consequences of such behavior. There are, in this respect,

only three cases which need concern us; in all three we.will

assume that the statistical test of interaction is nonsignificant.

Case 1: No interaction in the population

The first case we shall consider is the case when indeed

there is, in nature, no interaction present. No empirical demon-

stration is needed to verify that if one has the form of the true

linear model, the least squares estimates of the parameters in

that model will be the best unbiased linear estimates. Further-

more, it is completely obvious that if one fits an interactive

model when there is in fact no interaction, one will obtain

tnbiased estimates which will not be minimum variance. For this

itason it is a mistake to include worthless effects in an ANOVA

model, just as it would be to include worthless variables in a

regression problem. The additional sampling error causes the

7 0



-TO-

main effect parameters and the estimated cell means.to have larger

standard errors than would the estimates from a main effects model.

This point has been noted in a revession context by Walls and

Weeks (1969) and is exactly what would occur if Overall and

Spiegel's Method I were applied in this case. The increase in

sampling error may be quite substantial and will result in less

powerful tests of main effects.

Case 2: Small but nonsignificant interaction effects

The second case is the situation in which there is a true

interaction but iti magnitude is too small to be detected by a

conventional test of interaction. We have previously argued that

the main effect parameters are not meaningful for the interactive

model, but that the predicted cell means are. The predicted cell

means will have a smaller variance when estimated in the main

effects model than when estimated in the interactive model since

the variance depends only unon the design matrix (X 1_ the usual

matrix approach to ANOVA) and the variance of the dependent

variable. The predicted cell means will, however, be biased in

this case. Since we can no longer speak of minimum variance

unbiased estimators, it then becomes the mean square error which

is relevant for.comparison. We must add the mean squared bias

(which will be a function of the magnitude of the small but nonzero

interaction terms) to the variance to obtain the mean square error.

This term will be small if the interactive effects are small as

would be the situation under Case 2. Operating under Case 2, we

wi..11 still be estimating the same parameters and testing the same

effects in both the orthogonal and nonorthogonal caSes, but we
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%rill simply be estimativg and testing with a small'amount of bias.
We Vill gain substantially in that the estimates will be more
precise and the tests vill be more powerful than if ve followed
Overall and Spiegel's Method I which is based upon the interactive
model.

To see the difference, let us compare the variances of the
estimated parameters and estimated cell means f.m. the data used
by Overall et al. In Table 10 we have computed the variances of
the estimated main effect parameters and the predicted cell means
for both 'he main effects model (our procedure) and the inter-
active model (Overalland

Spiegel's Method I). If X is the matrix
of independent variables, the variance-covariance matrix of the
estimated parameters is (X'X)-1a2 while the variance-covariance
matrix of the predicted cell means is X (X'X) -1X'a

2
. The variances

are on the diagonals of these matrices and do not depend upon
2which model is correct in nature. Since a serves only as a scale

factor, we have assumed in Table 10 that it is equal to one. We
see that the estimated parameters of the main effects model have
slightly smaller variances than those of the interactive model,
while the corresponding predicted cell means have substantially
smaller variances when estimated from the main effects model.
The effect on the predicted cell means is particularly marked
for the cells with a small number of observations, since the
variance of a sample mean (the predicted value for an interactive
model) is simply

Case 3: A large interaction which is not detected

The third case covers the situation where a large interaction
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Table 10

Variances of Parameter Estimates and Predicted Cell

Means for 3x5 Factorial Design with Unequal Numbers

2
of Observations Assuming cT 1.

Parameters

Estimatc,d

a
1

Main Effects Model

.161

.241

Interactive Model

.169

.244

a
2

.235. .244

01
.241 .244

2
.224 .231

Estimated

Cell Means

Y
11 .116 .167

Y
12 .151 .333

A
Y13 .158 .j33
A
Y21 .158 .333

i
22

.112 .167

i
23 .154

_
.333

i
31

.151 .333

i
32 .109 .167

i
33

.112 .167
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is somehow not detected by the interaction tPs . In this situa-

tion the reverse of Case II will occur and the mean square errors

of the estimated parameters and cell means will be small for the

interactive model. The probability of this third case occurring

is, however, remote, for if the magnitude of the interaction

effects is large and if the sample size is reasonable the power

of the interaction test is quite.large.

We have shown above that the s;,gnificance testing

procedures which we have previously recommended for the nonortho-

gonal ANOVA are consistent vith the basic principle advocated by

Overall et al.; namely, that in the nonorthogonal case one should

estimate the same parameters and test the same hypotheses that

one would estimate and test if there were equal numbers of obser-

vations in the cells. Indeed, that principle ds implicit in our

original paper. We have pointed out that our method of fitting

a series of main effect models (in the absence of interaction)

is not the same as their Method II. We have further shown that

their method for achieving the stated goal is incorrect and, if

routinely applied, will not lead to optimal tests or estimates.

In discussing the relationship between estimates and hypothesis

testing we believe that we have made clear the reasons for pre-

ferring our procedure since it leads to more powerful tests and

more precise estimates.

It must be recalled that the issue of how to estimate effects

and how to test hypotheses are rather distinct. The methods

discussed by Overall et al. and by us are methods for testing
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hypotheses and not for tho estimation of effects. This distinc-

tion is not one which we uniquely make. Bock (1975), for instance,

regards these as distinct processes. He begins with some initial

model, performs tests of significance to determine if a simpler

model is appropriate, and then estimates. the parameters in the

simplest reasonable model. We have.seen no evidence which sug-

gests that the methods advocated by Overall et al. are preferable.

We continue to maintain, along with Rao and others, that one

should test main effects, assuming no interaction to be present,

when this is what is suggested by the data at hind.
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Chapter IV: A Coii.arison of Balancin and Other Methods of A. ustment

Several alternative methods are available for adjusting for group

differences in a dependent variable when the groups are not randomly

constituted and thus may exhibit systematic differences on interfering

variables that are related to the dependent variable. The best known of

these methods is analysis of covariance. Other methods, based upon

somewhat different assumptions, include direct and indirect standardization

and balancing.
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Analysis of Covariance

Analysis of covariance (see, e.g., Elashoff, 1969; Tatsu-
oka, 1971) assumes that, in the population of interest, the
i'th person in the j'th group has a score Yij on the dependent
variable that can be expressed as

Y.0 =1.3 B (xii - R) eij

(vhere pj = p aj). In this notation uj is the adjusted pop-

ulation mean on the dependent v%riable for the j'th group; B
is the within-group regression coefficient; Xij is the score

on the interfering variable (the variable for which adjustment
is made) for the i'th person in the j'th group; X is the mean
score of the observations over all groups on the interfering
variable;and,e.ij is an error term for the i'th person in the

rth group. The mean score on the dependent variable for the
rth group can be expressed as

-j

where R is tbe mean observed score on the interfering variable

for group j and is the mean error term for group j.

For more thaq one interfering variable, a model of the
following form is used:

E B(m) 01(m) R(m)) -6

m
1,where B1701 is the within-group multiple regression coefficient

-(m)for the m'th interfering variable; X, is the mean score for
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-(m)the j'th group on the m'th interfering variable; and, X is
the mean score over all groups on the m'th interfering variable.

Least squares estimates for the parameters of the model
are obtainable and parameter values can be replaced by these
estimates to obtain an estimate of the adjusted mean score for
the j'th group,

y E ;(m) 0--((m)

Balancin Direct Standardization and Indirect Standardi',ation

With one interfering variable, the model used in balancing,
direct standardization, and indirect standardization is the
additive analysis of variance model. This model assumes that
in the population the i'th person in the j'th group with a
score at the k'th level of an interfering variable has a score
ijk that can be expressed asY

or

y
ijk =p+a+y+ e.j k ljk '

y = p + y e .ijk k ijk

The mean score for persons in the j'th group and the k'th leIel
of the interfering variable then can be expressed as

JkPj'k+eJkk .

In this notation U is the adjusted mean (in the population) on

the dependent variable for the j'th group and yk is an effect

associated with the k'th level of the interfering variable.

With mcre than one interfering variable, balancing still
maj, be employed, based upon the additive analysis of variance
model. Direct standardization and indirect standardization
usually are defined only for one interfering variable. However,
each can be generalized to accomodate more than one interfering
variable. The generalized model for either direct or indirect
standardization also allows for all possible interactions among
the interfering variables. For example, for three interfering
variables, balancing employs a model of the form
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y = p + y 60 + T + i'jktmjam j k

generalized direct and indirect standardization are not re-
stricted to an additive model and may use a model of the form

= P + +jam j Yk (St 4. 1m e YIkm ftem Y6Tk6 4* ;jam .

More will be said about generalized direct and indirect stand-
ardization in a later section.

While the analysis of covariance model (of the previous
section) can treat interfering variables either as continuous
or discrete, these analysis of variance models must treat all
interfering variables as discrete, since each is to be cate-
gorized by level. However, measurement on a continuous vari-
able must always result in observed values on a discrete vari-
able, since tbri measurement process yields a finite set of
possible values while the number of posaible values of a con-
tinuous variable is indefinitely large (see Jones, 1971).
Thus,.the operative distinction is that, with ANCOVA, an inter-
fering variable may be measured with an indefinitely large
number of score categories, while with balancing and standard-
ization (direct and indirect), it is desirable that the number
of score categories be limited. Results given by Cochran
(1968a) suggest that only: a slight loss of precision is asso-
ciated with categorizing a continuous variable and then urling
standardization instead of using analysis of covariance with
the original continuous variable as the covariate. Since wt
wish to compare ANCOVA, standardization (direct and indirect),
and balancing, the remainder of this discussion assumes that
variables are discrete, either because this was their original
form or because they have been categorized.

Balancing -- The technique of balancing was developed for
the National Assessment of Educational Progress in an attempt
to present estimates of educational achievement that are rela-
tively uncontaminated by interfering 'variables (see National
Assessment of Educational Progress, 1973). Appelbaum and
Cramer (1975) have shown that the estimates of parameters from
balancing are the least squares estimates from an additive ana-
lysis of variance model, obtained by solving the normal equa-
tions. The primary estimates of interest are the estimates of
the adjusted mean scores, the Oju

There is'a systematic relationship between estimates ob-
tained by ANCOVA and balancing when interfering variables are
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discrete. To understand this relationship, it must be realid
that nohorthogonal ANOVA estimates can be obtained by usinc
orthogonal polynomial contrasts for each interfericp: variable
as covariates in the ANCOVA model, since both AI:OVA and ANCOVA
are part of the general linear model (e.g., Bock, 1975, chap.
5; Ctthen, 1968). Analysis of covariance, however, uses only
the linear trends of each factor as covariates, while bal-
ancing uses all trends of each factor as adjustment variates.
Thus, estimates from the ANCOVA model are equivalent to those
,from a balancing model that assumes all trends other than the
linear to be equal to zero.

The choice between using balancing or ANCOVA involves a
trade between bias and variability of the estimates. Parameter
estimates obtained from a model are unbiased only if that
model is valid in the population (Draper and Smith, 1966).
Analysis of covariance, unlike balancing, requires that all
nonlinear trends be zero in the population if its estimates
are to be unbiased. Thus, estimates from ANCOVA are at least
as biased as estimates from balancing. On the other hand,
since the parameters of the ANCOVA model are a subset of those
cf the balancing model, and since both models may be conceptu-
alized as regression models, the variance of balanced estimates
must be at least as large as the variance of estimates from
ANCOVA (see Walls and Weeks, 1969, for the general regression
case).

When it is certain that the relations between the inter-
fering variables and the dependent variable are essentially
linear, analysis of covariance is to be preferred to balancing,
since estimates from both models are unbiased but those from
the ANCOVA model are less variable. When relations are mate-
rially nonlinear, balancing is generally to be preferred to
ANCOVA, but the magnitude of nonlinear trends and the sample
size both 7hou1d be considered. Estimates from balancing are
Jess biased than those from analysis of covariance; the dif-
ference between the sauared biases of the estimates from bal-
ancing and from ANCWA depends upon the magnitude of nonlinear
trends and is independerlt of sample size. However, the dif-
ference between the variances of the estimates from balancing
and from ANCOVA is inversely proportional to sample size.
With few observations, the difference between the variances ii
more likely to exceed the differences between the squared
biases, in which case ANCOVA has the smaller mean-sauare error
and on that basis ANCOVA is preferred to balancing. With a
sufficit-nt number of observations, however, the difference be-
tween the variances is unlikely to exceed the difference be-
tween the squared biases, in which case balancing, with a
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smaller mean-square error, is to be preferred. (AA alternative
under these conditions, not considered here, is a generalized
ANCOVA, which adjusts for some subset of the nonlinear trends.)

Direct standardization -- Direct standardization has been
used extensively by demographers, biostatisticians, and health
researchers desiring to adjust for interfering variables in,.
the comparison of group effects. Basic references for direct-
standardization are Fleiss (1973) and Kelton (1968). An exam-.
ple of the use of direct standardization is presented by Moses
(1969) in connection with the National Halothane Study, where
the desire was to assess the effects of halothane and other
anesthetics on death rates, taking account of the differential
patient characteristics associated with the use of various
anesthetics.

With one interfe. ng variable, direct standardization is
based on the same mode_ as balancing, but involves a different
procedure for estimating parameters. The first step in this
procedure is to estimate parameter differences of the form
aj aj where j and j' represent distinct groups. Direct

standardization estim!!--s this difference to be

wk(7jk 7itk)
aj aj,

E w
k

where the w
k represent weights chosen by the experimenter.

Kalton (1968) has shown that, when adjusting for one intez-
fering variable and comparing the means of two groups, a mini-
mum variance estimator of this difference (assumed to be con-
stant for all k) is obtained by choosing weights such that

n
lk

n
2k

k =
nlk n 2k

This derivation assumes equal variance within each cell of the
design. While the assumption is unlikely to be valid for pro-
portions, Kelton (1968, pp.,127-121 shows that for proportions
this choice of weights usually is adequate and sometimes is
preferable to the use of weights obtained assuming unequal cell
variances. Thus, the diffe4ence between the means of the two
groups at a particular level of the interfering variable is
weighted inversely proportional to the variance of the differ-
ence between the mean..i. Intuitively, when both groups are yell

8 1
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represented at a particular level of the interfering variable,
the variance of the difference between the group means will be
relatively small, and that level of the interfering variable
will receive a relatively large weight in the estimate of the
adjusted difference between the group means. Kalton states,
"If the are normally distributed within subgroups, this

model is the usual fixed effects analysis of variance model,
with

E w )k lk 2k
a
1

- a
2

=
E w

k

estimating a main effect" (Kalton, 1968, p. 123; the notation
is changed to correspond with that used here). Direct stand-
ardization with these minimum-variance-producing weights will
yield the same estimates as balancing, i.e., the estimates
from an addi:ive analysis of variance model, with or without
a normal error distribution.

Snedecor and Cochran (1967) show 4-,hat, in an additive
two-factor analysis of variance model where one factor has twc
levels, the estimated differential effect for that factor is
'given by

nlkn 2k -
E

nlk 2k
(Y
lk

- Y
2k

)

+a-
1 a2 _

nlkn 2k
E
, n . + n
As 14 2k

confirming that direct standardization with this choice of
weights does produce the same estimates as the least-squares
estimation procedure of an additive analysis of variance modl.
When both factors have more than two levels, however, this
choice of weights does not in general yield the same estimates
as the least-squares estimation procedure used with the addi-
tive analysis of variance model. Thus, when more than two
groups are to be compared, the weights presented by Kalton
(1968) will not produce the same estimates as an additive ana-
lysis of variance procedure. Intuiti7ely, this can be under-
stood by noting that a comparison of two of the groups by
direct standardization completely ignores all other groups when
adjusting for the effect of the interfering variable. In con-
trast, the standard estimation method under the analysis of
variance model uses all groups to estimate the effect of the
interfering variaole.

8 2
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The remainder of the discussion of this weighting proce-
dure assumes that only two groups are to be compared.

While direct standardization usually has been used only
when one interfering variable is to be adjusted for, the proce-
dure can be generalized to more than one interfering variable.
For example, consider three interfering variables with K, L,
and M levels. This design can be re-expressed,as a design with
one interfering variable with KxLxM levels. Direct standardi-
zation with minimpm-variance-producing weights for this design
will then yield the same estimates for adjusted group means as
would the standard estimation methods for an analysis of vari-
ance model of the form

61-jktm Y 6.1 7m Y6ke Yrkm tmj k

"Otani

With e interfering variable (and only two groups) bal-
ancing and direct standardization give the same estimates.
With more than one interfering variable, the estimates from
balancing and direct standardization generally will differ.
Direct standardization requires that there be at least one ob-
servation for every combination of the interfering variables,
so that

niktm n2ktra 0

for all k, t, and m; otherwise, estimates cannot be obtained
in this model, because division by zero would bcreauired.
In thiF study, involving five interfering variabies, direct
standardization is not employed because this requiremet Tails
to be satisfied.

Another weighting procedure for direct standardization
seems to be more widely used than that described by Kalton
(1968). This procedure, described by Fleiss (1973), Cochran
(1968a), and Moses (1969), uses weights of the form
w
k = Zn

jk
= nk, so that

nk(jk

8 3
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Both this weighting procedure and Kalton's (1968) yield unbi-
ased estimates of the group effect in the analysis of variance
model, but in general the variance of the estimate based upon
this procedure is at least as large as the variance based upon
Kalton's procedure. Intuitively, this procedure takes into
account only the total number of observations for a level of
the interfering variable; -Ly neglecting how this total is dis-
tributed for the different groups, an unstable estimate of the
mean for a particular group at some level may receive a large
weight with this procedure. This weighting procedure requires
that no cell in the analysis of variance design be empty. For
example, given three interfering variables with K, L, and M
levels, this procedure requires that

0 0njktm

for all j, k, t, and m, a 1re stringent requirement than for
Kalton's procedure. Thus, this weighting procedure, although
the one usually used, has no advantages over the weighting
procedure presented by Kelton (1968); Kalton's procedure does
possess several advantages over thi :. alternative procedure.

Indirect standardization -- Indirect standardization has
been used even more extensively than direct standardization by
demographers, biostatisticians, and other medical researchers,
according to Fleiss (1973). The probable reason for the
greater usage of indirect standardization is that, unlike the
usual form of direct standardization (as presented by Fleiss,
197.,;), indirect standardization does not suffer from the prob-
lem of assigning large weights to unstable cell means ana it
may be used even if a cell in the design is empty. An example
of the use of indirect standardization is again the National
Halothane Stur3y, discussed by Moses (1969).

With one interfering variable, indirect standardination
is based on the same model as balancing and direct standardi-
zation, but employs a different method for estimating para-
meters. There are two approaches to indirect standardization,
both of which have been developed only for one interfering
variable. However, for more than one interfering variable, a
generalized indirect standardization procedare can be defined
in a mannez analogous to that for direct standardization,
where the design is re-expressed as a design with one inter-
fering variable. The following discussion assumes there to be
only one interfering variable, either because this is the
original design or because the original multivariable design
has been re-expressed.

8 4
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One approach is that given by Wiley (1973). Whereas balan-
cing obtains estimates by solving the normal eauations to arrive
at a simultaneous fit to the data, indirect standardization as
defined by Wiley obtains estimates in a two-step process. First,
estimates of the effect associated with each level of the inter-
fering variable are obtained in a model that assumes no main ef-

for all j); the model thus is of the form

y
jk

= P + Y
k

+
jk

.

Least squares estimates are obtained for P and Y
k

. These esti-
mates are given by

and

A

= 5 (the weighted grand mean) ,

Second, these estimates are used to obtain the estimated adjusted
score for the j'th group in the model with two main effects,

y
jk

= P + aj + yk +
jk

- P +
jk

.

It now will be shown that when 1-1
k
and P are constrained to y

k
and

respectively, the least squares estimate for Pj is given by

E nika-jk Yk)
5 k

nj

the estimated adjusted score of Wiley's approach. The squared
error for the j'th group is given by

^ 2
n
jk

(Y - Y
jk )

which equals

A

A A

E n - (u + Ilk - n2jk
k

j

-
Substituting pk = Yk and p = 5 and setting the derivative with

respect to pi equal to zero,
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-2 E n + =jk jk j K

n
jk

(2
jk - Yk ) + njC = njuj

E njk(Ijk Yk)
a .1- = u

nj j

Tip, compare Wiley's formula with those for balancing and
direct standardization, we can compute
a a a a
U ,

( k

;)

Enjk(Yjk Yk)

nj

Enj'ic.(Yj'k Yk)k

When comparing two groups (the case for which adjustment
techniques are most often used), indirect standardization as
defined by Wiley provides the following estimate of

1
-

2'

a
E[n

2n lkYlk
n
1
n
2k
Y
2k

+ (n
1
n
2k n 2 nlk)Y k

Since

n n
2

y
n
lk lk

+ n
2k

Y
2k

nik + n
2k

'

a a (n
1

n )n n (Y - )2 lk 2k lk 2k
111 112 = n n (n +

1 2 lk 2k

This can be reWritten as

a a n
1
+ n

2
n
lk

n
2k

1 - P
2 -

(Ylk Y2k )n1n2
k

n
lk

+ n
2k

n
lk

n
2k

)

(Y
lk

-
2k

)n n .+n(z lk
n
2k k lk 2k

n n1 2 k
n
lk

+n
2k lk :)

k nlk+n 2k
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But the third expression in parentheses is the estimate for
balancing. Thus,

n14n2 n3kn2k
P2)Wiley kn1n2 nik+n2k U11 /12)Balancing

Wiley's estimate of the group effect eql.als the balancing esti-
mate (and thus also equals the estimate from direct standardi-
zation) if and only if

n
1
n
2

n
lk
n
2k

E
nl + n2

k
n
lk

+
u2k

that is, if and only if

En
lk

En
2k n nk k lk 2k
n ) n + nlk 2k k lk 2k

Another approach to indirect standardization, discussed by
Fleiss (1973), involves multiplication of the grand mean esti-
mate by the estimated mean unadjued scorP of the j'th group,
and division of this prt.:duct by 7,he mean score that the j'th
group would have received if its mean score on the dependent
variable within each level of the interfering variable had been
the same as that of the population. This approach uses the
same estimates as Wiley's approach but combines them in a mul-
tiplicative rather than an additive fashion. It yields an esti-
mated adjusted score for the j'th group that can be written as

A

= k

E n
jk k
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An evaluation of indirect standardization -- Analysis of
covariance, balancing, and direct standardization have been
compared and contrasted, with a discussion of the relative
merits of each. Still to be discussed is the relative value
of each of those approaches compared with indirect standardi-
zation when adjusting for only one interfering variable.

TABL'

Number of Subjects and Score by Group
Within Each Level of the Interfering Iariable

Level of
Interfering
Variable

1

2

3

5

Marginal

Group 1 Group 2

N=1
Y=20

N=1
-2=10

N=1
Y=4o

N=2
Y=30

F=2
Y.-6o

N---3

Y-5o

N=9
Y=8o

N.4
Y--.7o

N=2
Y=100

N=5
Y=90

N=15
Y=73.3

N=15
Y=63.3

Marginal

N=2

N=5
Y=54

N=13.
Y=77

N=7
Y=92.9

N=30

Two examrles are cited t illustrate certain features ofthe two alternatiye estimation procedures for indirect stand-ardization ,First, c!onsider the fictitious data given in
Tabler. Witilln each group, there is a perfect linear rela-
tionship between the interfering variable and the dependentvariable. Also, at each level of the interfering variable,
Group 1 has a mean score 10 points higher on the dependent
variable than does Group 2. Note also that the frequency
distribution of scores on the interfering variable is quite
'different fur the two groups.



TABLE II

Adjusted Mean Scores from Table V

Group k Group 2 Difference

Wiley 72.71 63.96 8.75

Fleiss 72.67 63.92 8.75

=OVA 73.33 63.33 10

Balancing 73.33 63.33 10.

Adjusted mean scores for the two groups as derived from
each adjustment techniaue are given in Table II. Analysis of
covariance and balancing both estimate the difference between
adjusted scores to be 10, while either method of indirect
standardizat4on estimates the difference to be slightly less
than 10. Bu, the evidence is that, within any level of the
interfering variable, the difference is in fact 10, so this is
the desired difference between the adjusted scores. Analysis
of covariance and balancing both recover this difference, in
contrast to both forms of indirect standardization.

As a general rule, analysis of covariance will recover the
desired difference whenever there is no interaction between the
interfering variable and the grouping and all higher-order
trends are zero in the data. Balancing will recover this de-
sired difference whenever there is no interaction between the
interfering variable and the grouping. When there is such an
interaction, the mew score difference between groups varies
depending on the particular level of the interfering variable,
so there is yarying evidence on the difference between the
groups. In general, indirect standardization will not recover
this desired difference.

A second exampL: .!nows another way in which either ap-
proach toindirect st,JAardization may yield misleading results.
Consider the data in C,:zble III. For these data, Group 1 has a
mean score of 60 at every level of the interfering variable,
while Group 2 has a mean score of 40 at every level. In addi-
tion, there is little overlap between the two groups on the
interfering variable; only for level 3 are there observations
for both groups, and here, as elsewher, Group 1 has an average
score of 60 while Group 2 has a mean score of 40. It seems
reasonable to conclude that within groups the interfering vari-
able and the dependent variable are unreled; instead, group 1
members tend to score higher than Group 2 1:::embers on both the
intnrfering variable and the dependent variable.

8 9
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TABLE III

Number of Subjects and Mean Score by Group
Within Each Level of the Interfering Variable

Level of
1

Interfering
Variable

2

3

5

Marginal

Group 1 Grou 2

N=0 N=50
Y=40

N=0 N=25
Y.-40

N.25 N.25
i"....60 Y.40

N=25 N=0
Y=60

N=50 N=0
Y=60

N=100 N=100

Marginal

N=50
1.40

N=25

N=50.
Y=50

N=25

N=50
Y.60

N=200
Y=50

Both analysis of covariance and balancing support This
conclusion, as seen in Table IV. The adjusted score ior each
group equals the unadjusted score for the group. Indiract
standardization, however, gives the impression that the differ-
ence between the mean scores of the groups can be explained by
their being different on the interfering variable. The adjusted
rates obtained from indirect standardization are very nearly
equal for the two groups.

TABLE IV

Adjusted Mean Scores from Table III

Group 1 21.1aaP.2. Difference

Wiley 52.50 47.50 5.00

Fleiss 52.17 47.06 5.11

ANCOVA 6o 4o 20

Balancing 60 140 20

....

9 0
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Adjusted mean scores obtained from balancing will Oiffer
from unadjusted mean scores if and only if the interfering
variable is related to the dependent variable within each group
(homogeneity of the relation is assumed) and the groups have
different means on the interfering variable. For analysis of
covariance, there is the additional restriction that adjusted
scores will differ from unadjusted scores only to the extent
of linear relationship. Indirect standardization, on ;he other
hand, may give adjusted scores that are different from the
unadjusted scores despite groups having the same mean on the
interfering variable (see Tables land II), or despite there
being no (within group) relation between the interfering vari-
able and the dependent variable (see Tables III and IV).

With reference to admission Llata, let us consider an exam-
ple of how either approach to indirect standardization may be
misleading. Suppose that in Table III, Group 1 represents male
applicants, Group 2 represents female applicants, and the inter-
fering variable is height. In these hypothetical data, male
applicants all have heights which place them in level 3 or 4
or 5, while female applicants all are placed in level 1 or 2
or 3. Male applicants have an average admission rate of 60
percent regardless of their height, while female applicants
have an average of 4o percent regardless of their height.
There is no relation between height and admission within sex,
i.e., an admission committee does not act on the basis of an
apPlicant's height. Thus, in all probability, if the average
height of women were to increase, their admission rate would
stay the same. But indirect standardization leads us to be-
lieve that if women were only taller, they would be accepted
at almost the same rate as men. From the results of indirect
standardization, it would seem that males and females are being
accepted at nearly the same rate, once we take into account the
difference in average height. But results obtained from bal-
ancing and analysis of covariance will yield an adjusted admis-
sion rate for male applicants of 60 percent and a rate for fe-
males of 40 percent, implying that the admission rate for males
would remain substantially higher than the rate for females

. even if the average height for female applicants were to in-
crease.

The example given in Table III is an extreme case illus-
triAing a possible difference between results obtained by indi-
rect standardization and results from balancing and.analysis
of covariance. Both of the latter techniques rely on the rela-
tion between the interfering variable and the dependent variable
within each ErouR. Such a relation hould be found (except for
chance error) if and only if the interfering variable is ,-;.terting

9 1



an influence on the decisdons of the admission committee, in
which crAse it is reasonable to predict that if a group's mean
score on the interfering variable were higher, the sroup's
admission rate also would be higher. When it is desired that
adjut:tment be made only for such a "within-group" relation,
the nse of either balancing or analysis of covariance is always
preferable to the use of indirect standardization.

In general, indirect standardization seems to offer no
advantages over balancing, but seems to suffer from several
disadvantages. The only advantage indirect standardization
has over analysis of covariance is that it allows for a non-
linear relation between the interfering and the dependent var-
iable, but balancing also makes this allowance. Thus, it seems
that either balancing or analysis of covariance should be used
to obtain adjusted scores.

9 2
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Chapter V: "Smpar and Sweee Analysis

One of the secon3a,'T objectives of this grant was the investigation of

other data analytic techniques used to adjust for nuisance confounding in the

NAEP I.tudies. One such technique (and the only other "non-standard" technique

of major consequence) is that known aS smear-and-sweep. The following chap+

gives the basic results on smear-and-sweep and its relation to balancing and

the nonorthogonal analysis of variance.

9 3
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IA many behavioral or social research situations, researchers may want

tc estimate trestment effects or the relationships between input and oUtput

variables, while controlling for a number of extraneous variables. Some methods

of analysis use the input and the extraneous variables to form multifactor

classifications, and then estimate the treatment effects or relationships,

adjusted for the effects of extraneous variables. A large nuMber of variables

available in the data may thus be selected to form multifactor cross-classifica-

_tions, resulting in few observations per cell, indeed some cells in the

crossed-classified may have no observations. For example, if 2500 sixth-grade

students are involved in a study of educational progress, and later stratified

into subgroups by region of the country (four levels), sex, race (three levels),

type of community (seven levels), and parental education (five levels), they

will be distributed over 840 cell combinations giving an average of about three

observations per cell. With this many cells the data in each cell become too

sparse to allow stable estimates of cell 7alues, ana direct control on all the

extraneous variables by multifactor classification may, therefore, be impractical.

Smear and Sweep Analysis

One method developed for the d_ data resulting from the after-the-fact

classifications is the Smear-aad Sweep analysis. This method first appeared in

the report of the National Halothane Study (Gentleman, Gilbert & Tukey, 1969)

in which the death rate of the patients in operations using Halothane 7as

examined. It was later considered by the National Assessment of Educational

Progress (NAEP) as a possible method to obtain sharper subpopulation weights

(see Ahmann, 1973, pp. 108-109).

Smear-and-sweep is a method that first pools the cells of the control

variables in a cross-classification table into cailegories in which the cell

9 ,1



values (e.g., proportions, ratios, means) are reasonably similar, and then

ealculates and compares the "effects" for an independent variable of interest

across a final st of categories. The basic strategy is to form a two-way

table on two of tIle control gariables at a time. (This step is referred to

as smearing.) The cella of this table are then ordered on a single dimension

according to the value cot the dependent variable in the cells. value of

this dependent variable May Ve.simply the observed data, Least Squares estimated,

or statistically adjustd values. Then the adjacent cells are pooled into a

smaller number of categories I./rich define the levels of a new conglomerate

variable. (This step i5 re-Perred to as sweeping.) The process is then repeated

by formirg another elassifistion table consisting of the newly formed conglo-

merate variable and another Control variable. This poce7;s is continued until

only a single conglorserate vsriable remains. The final conglomerate variable

is then cross-classifieel with the independent variable of interest. This tabl

is then used t6 conall,ute Marginal estimates and peorm some comparisons among

the levels of the irldepeAdent variable of iLterest, using (lassical techniaues
.

-
such as analysis of variance,

The essence of thi5 method is that it permits the researcher to handle

many known and available variables as control variables. The process of Smear-

and-Sweep will presUnablY control or minimizr the effects of extraneous variables,

and thus allows better satitates of the effects due to the independent variable

of interest. By using -hwo variables at a time, th number of observations in

each cell combination msY be large enough for stable estimates.

An Illustration

Smear-and-Sweep analysis is illustrated by the following hypothetical

data set. A probability sasiple of 1,933 high school graduates were given a

science test. Their te5t scores vere scored either 1 (pass) or 0 (fail).
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Suppose that, using this data set, a researcher was interested in testing

ethnic gronp on the students' test :cores after contro- _4. for sex, region,

socioeconomic (SES), and high school curricular program (HSP). The researcher

could use a multifactor design, and apply analysis of variance to obtain

adjusted marginal estimates for ethnic groups; however, in so doing, the

observations within each cell combination would be very :;parse. Many cells

woulC1 have two or three observations while some other cells would have none;

the cell sizes might not be sufficient to provide stable estimates.

Given these problems, the researcher chose to use a more "data analytic"

approach, namely Smear-and-Sweep. The-researcher first cross-classified

students on the basis of their socioeconomic background and high school pro-

gram (HSP). SES had three categories: high, middle, and low in correspondence

with upper quartile, middle two quartiles, and lower quartile of the SES

composite scores, respectively. HSP was defined by college preparatory

(academl:;), eneral and vocational-technical (voc-tech) programs. The propor-

tion of pass for each cell combination was computed as follows:

P. -

whereS.is the number of students who had a score of 1 in the i'th SES andij

PthHSP,andli.is the total number of respondents in this cell.ij

The obtained proportions were then ordered, and their corresponding cells

were grouped into five categories as indicated in Table 1. The criterion for

grouping was that the range of proportions in each category should not exceed

.05. These five categories comprised a new "conglomerate" variable; each

category incorporating some "effects" due to SES and HSP.

9 6
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Table 1

Proportion of Pass for SES and HSP
Cross-Classification Groups

SES
High School
Program

Proportion
of Pass Category

High Academic .82 1

Middle Academic .67 2

High General .56 3

Low Academic .55 3

High Voc-Tech 34 4

Middle General .32 4
Middle Voc-Tech .22 5

Low General .22 5

Low Voc-Tech .17 5

The newly formed conglomerate variable was then cross-classified with

four geographic regions and resulted in a four-by-five classification table.

The cell values (i.e., proportions) of this table were calculated, and the

cells were grouped in accordance with the rules described previously. The

results are presented in Table 2. As seen in the table, the new conglomerate

variable included seven categories as indicated by the number in the parentheses.

Table 2

Proportion of Pass for Region and the
First Conglomerate Variable Combination Group

Region 1

Conglomerate Variable

2 3 4 5

Northeast .84(1)* .70(2) .60(3) .26(7) .26(8)

North Central .82(1) .65(2) .52(5) .30(7) .21(8)

South .82(1) .64(3) .56(4) .36(6) .19(8)

West .80(1) .67(2) .58(4) .34(6) .30(7)

*The figures in parentheses denote the levels of newly formed variables.

9 7
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Similarly, the second newly formed variable vas then crossed with two sex

groups to for a two-by eight claSsification table. The proportion of pass in

each cell combination is presented in Table 3. Again, the proportions were

ordered, and their corresponding cells were grouped into categories, as indi-

cated by the number in the parentheses, based upon the same criterion that the

range of proportions in each category should not exceed .05.

Table 3

Proportion of Pass for Sex and the
Second Conglomerate Variable Combination Group

Sex 1 2 3 5 6 , 7 8

Male

Female

.82(1)*

.83(1)

.69(2)

.67(2)

.62(3)

.64(2)

.53(4)

.60(3)

.53(4)

.50(4):

34(5)

.36(5)

.30(6)

.28(6)

.20(7)

.18(7)

*The figures in parentheses denote the levels of newly formed variable.

The last newly formed conglomerate variable was then cross-classified

with ethnic group, which was the independent variable of interest. There were

four ethnic groups: black, white, Hispanic (Spanish American), and others. The

resulting four-by-seven table and its cell values are presented in Table 4.

The last column of the table presents the adjusted average of cell proportions

for each ethnic group. No substantial differences among ethnic groups were

revealed, although whites had a slightly lower proportion than other groups.

It should be noted, however, that these adjusted estimates were quite different

from unadjusted ones. Had the proportions been estimated without controlling

for sex, region, SES and HSP, the estimates would have been .36, .47, .38, and

.42 for blacks, whites, Hispanics and others, respectively. Whites would have

had a much higher proportion of pass than blacks.

9 8
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Table 4

6

Proportion of Pass for Race and the
Third Conglomerate Variable Combination Group

Ethnic
Group 1 2

Conglomerate Variable
3 4 5 6 7

Adjusted
Average

Black .87 .66 .59 .38 .44 .43 .23 .52

White .82 .67 .61 .55 .34 .28 .17 .49

Hispanic .79 .65 .6o .57 .40 .29 .24 .51

Other .89 .74 .65 .51 .39 .25 .18 .52

It is seen that the entire process of smear-and-sweep requires the

selection of classification variables, and the following guidance functions:

(1) the order in which the classification variables to be presented in the

analysis, and (2) the criterion for cell pooling. The pooling criterion may

be that each category contains (1) an approximately equal number of pass or

fail, (2) an eaual number of sample members, (3) equal variance of estimated

cell values (Gentleman, Gilbert, & Tukey, 1969, p. 289), or (4) equal range

of cell values. Once the guidance functions are sufficiently determined the

computational procedures become straightforward.

It should be noted that the cell values in the previous cross-classification

tables were estimated simply by using the Observed data. Other estimating

procedures are possible. For example, one might use the formula

w. x.
ijn ijn

P.
i

-
j

ijn

where W.
jn

is the sample weight for the n'th individual in the Wth cell, and
i

x. is the individual's score, either 1 or 0, 1 being pass, 0 being fail.
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Some Considerations to Smear-and-SweepAaImis

Although smear-and-sweep has been.applied to the analysis of the National

Halothane Study (Gentleman, Gilbert, & Tukey, 1969), no proof of the stability

and accuracy of estimation has been given. Many questions involving the choice

of guidance functions such as the number of categories, and tbe order of the

classification variables introduced into the process, are unanswered. Among

such questions, the following ones are considered critical:

1. Does the nuMber of categories selected affect the stability and

accuracy of the estimates?

2. Does the order of treating the interfering variables affect the

estimation of the effects of the independent variable?

3. How do the results obtained by smear-and-sweep differ from those

obtained by classical ANOVA?

To answer these questions, three sets of hypothetical data were constructed.

Each set of data was derived by using the following four-factor main-effect

model:

Yijkt "i 13j 4- yk 4- et 4- eijkt

in which p = , Eai = Esi = Eyk = EA.e. = 0, and E % n(0,1).

This additive model was selected for its simplicity. If smear-and-sweep does

not work in such a simple model, it will very likely fail in a more complicated

non-additive model.

In the four-factor model, the first factor (independent variable), denoted

by A, is the variable of interest. A has two levels; thus, the estimates of

effects for A
1

and A
2
are of main concern. The other three factors, designated

by B, C, and D, respectively, are referred to as interfering variables. All

these variables are assumed to be associated with the dependent variable.
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The error components for observations in each cell were chosen to be

normally distributed with a =an of 0 and a standard deviation of 1, and were

generated using a standard method (Box & Muller, 1958). The main effects for

all factors in the analysis were fixed at the values presented in Table 5.

These values represent differences ranging from four to one-tenth standard

deviations apart.

Table 5

Main Effects Selected for Each Set of Data

Data Set

Level
.

1 2.00 1.50 1.00A
42 -2.00 -1.50 -1.00

B
1 -1.50 -1.00 - .50
2 1.50 1.00 - .50

C
1 1.00 .50 .10
2 -1.00 - .50 - .10

D
1 .50 .10 .05
2 - .50 - .10 - .05

The cell frequencies (i.e., number of observations in each of the cell

combinations) are not equal, reflecting situations likely to be confronted in

actual studies. These frequencies, as presented in Table 6, were arbitrarily

chosen, with only the restriction that there be sufficient degrees of freedom

for testing any main effect.

A. Number of Categories

In the sweeping process, a critical question is: How many categories

should one use? It has been suggested that a relatively large number of cate-

gories would be preferred (Gentleman, Gilbert & Tukey, 1968, p. 296). However,

results in the National Halothane Study and the National Assessment of Educa-

tional Progress did not show a significant difference resulting from the number
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Table 6

Cell Frequencies

A B C D
Cell

Frequency
......- -

1 1 1 1 5
1 1 1 2 4
1 1 2 1 3

1 2 2 2
2 1 1 2

1 2 1 2 3
1 2 2 1 4
1 2 2 2 5
2 1 1 1 3
2 1 1 2 2
2 1 2 1 4

2 1 2 2 5
2 2 1 1 4
2 2 1 2 3
2 2 2 1 5
2 2 2 2 2

Total 56

of categories. This may be due to the fact that the cell values in those

studies were so homogeneous that different grcuping processes would not be

sensitive enough to affect estimates for each category. Nevertheless, differ-

ential effects resulting from various numbers of categories were investigated

with the following procedures.

First, factors B and C were smeared and swept into-a new variable with

four categories. This new variable was then smeared over factor D and resulted

in a two by four table. The estimated cell values were ordered and are presented

in Table 7.
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Table 7

Estimated Cell Value

Cell Order
Data Set 1 2 3 4 6 7 8

1 2.374 1.932 .505 .063 -.O24 -.466 -1.894 -2.336

11 1.332 .974 .463 .105 -.066 -.424 - .936 -1.294

Iv .482 .413 .084 .024 x14 -.o45 - .374 - .444

The ordered eight cells were wept into categories, starting from the cell

with the highest value, in accordance with each of the following criteria:

1. Cells with-positive values would be swept into one category, whereas

those with negative values would be swept into another.

2. The range of cell values within each category would be less than .45.

3. The range of cell values within each category would be less than .30.

4. The range of cell values within each category would be less than .05.

The numbers of resulting categories formed for each data set are presented

in Table 8.

Table 8

Number of Categories Formed Under Four Criteria

Data Set -.y 1
Criterion
2 3

I 2 Li 7 8

II 2 4 7 8

III 2 3* 3 7

*This classification was not used in the subsequent analyses

The independent variable A was then cross-classified with each final

conglomerate variable to form a two-way classification table. Analysis of

variance was then conducted for this two-way classification table, and the
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adjusted marginal means for A, and A2 were computed with an additive model.

The difference between the two levels, as contrasted with those expected true

differences tsee Table 5) and those estimated by mn1tifaCtor ANOVA, are presented

in Table 9. Some smear-and-sweep estimates (e.g., those obtained by two cate-

gories) are as close to the expected differences as those obtained by multifactor

ANOVA. The number of categories does affect estimates of the differences. For

data set I, the more categories used, the smaller the difference between Ai and

A
2'

and the greater the deviation of the estimated difference from the expected

value. This finding contradicts the suggestion that a larger number of cate-

gories be used (Gentleman) Gilbert & Tukey, 1969, p. 296). However, this

finding of the number of cr_stegories being negatively related to the magnitudes

of the estimates is not necessarily supported by results from data set III, for

which the seven-category estimate is closer to the expected than the three-

category estimate. It is, therefore, not clear how systematically the choice

of the number of categories can affect the precision of estimation. The authors

suspect that the effects msy fluctuate randomly. When the right number of'

categories is "hit," the estimates obtained by smear-and-sweep analysis can

-7-be as good as those by ANOVA or other methods.

B. Order of Variables

It has been argued that the order of the presentation of the variables

might be analogous to the step-wise regression analysis in which the most

important variable should be introduced first (Gentleman, Gilbert, & Tukey,

1969, p. 295). Previously, however, no systematic examination of this argument

has been conducted. It is, therefore, the purpose of this portion of the study

to explore the order effect of variables in the smear-and-sweep process.
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Table 9

Difference Between A, and A
2

As Obtained from Various Analyses

Analysis
Data Set

no-T

Smear and. Sweep

AxN(2)* 4.039 3.025 1.965
AxN(3) 1.433
AxN(4) 3.799 2.871
AxN(7) 3.764 2.747 1.760
AxN(8) 3.762 2.762

Factorial ANOVA 3.938 2.938 1.938

Expected 4.000 3.000 2.000

*The number in the parenthesis indicates the number of categories
for the final conglomerate variable.

For the same design and data used in the previous section, three possible

orders of variable presentation were investigated. They are:

B, C, D (the same as C, B, D),

(2) D, B, C (the same as B, D, 0, and

(3) C, D, B (the same as D, C, B).

The alphabetic order of B, C, and D indicates the order of importance of these

variables in terms of the magnitude of their effects (see Table 5).

Estimated differences between A
1

and A
2
from data set I under two cell-

pooling criteria are presented in Table 10. The results do not support the

argument that the most important variables should be introduced first. Results

from the other two sets of data also failed to provide positive evidence. It

seems that what makes estimates different is not the order of variable presenta-

tion but the resulting number of final categories.
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Table 10

Estimated Difference Between A, and A
2

With Three Orders of Variable Presentation for Data Set I

Order of Cell-Pooling Criterion
Presentation

Range less Range less
than .05 than . 0

B, c D 3.762(8)* 3.745(4)

B, D C 3.762(8) 3.764(7)

C, D B 3.76o(6) 3.799(4)

*The figures in parenthese6 indicate the number of categories of
the final conglomerate variable.

C. Comparisons on Test Statistics

Analysis of variance may be applied to the final cross-classification

table to test the significance of treatment effects or group difference

(Gentleman, Gilbert, & Tukey, 1969). The question then is: To what extent

will the results obtained by smear-and-sweep differ from those obtained by

a factorial analysis of variance if the data permit the latter analysis?

To answer this question, nonorthogonal analysis of variance (ANOVA) for a

factorial design was performed on data used in previous sections to obtain

test statistics.for A eliminating B, C, and D (A1B, C, D); namely, unconfounded

test of A (see Appelbaum & Cramer, 1973). Nonorthogonal ANOVA was also conducted

on the final two-way cross-classification table resulting from the smear-and-

sweep process, with A as one dimension 8.0 the newly formed variable as another

dimensii561.-'eUt should be noted that the4order of control variables imroduced

into the smear-and-sweep process was B, C, then D.)

The mean squares and degrees of freedom for each test are presented in

Table 11. It can be seen that in the smear-and-sweep analyses, between-group

variance decreases, as expected, as the number of categories of the final
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conglomerate variable increases. The vithin-group variances, however, fluctuate.

Converting the variances into F statistics, all of them are significant at the

.01 level with their associated degrees of freedom. As far as significance

testing is concerned, smear-and-sweep provides results similar to factorial

anAlysis of variance. However, amear-and-sweep analysis may provide a more

conservative test. Comparing A1B, C, D, and AIN(8), for example, both designs

produce the same magnitude of error variance, same degrees of freedom for A

effects, but their between7group variances are quite different; A1N(8) has much

smaller between-group variance than A1B, C, D. It is possible when A effects

are small, that the A1N(8) may provide test statist.,cs indicating non-significant

A effects while A1B, C, D indicates significant differences.

Smear-and-sweep analysis is a method to compute summary statistics such

that the effects of interfering variables are reduced or controlled. The basic

strategy is to pool cells of similar values into categories. It involves the

following steps: (1) forming a two-way classification table (i.e., smearing)

and estimating cell values; (2) forming categories based on cell values (i.e.,

sweeping); and (3) comparing the values among levels on the interested independent

variable across the final set of categories.

Since its development and application in the National Halothane Study, it

has received little systematic evaluation. This study shows that the precision

of the summary statistics depends very much on the choice of the nuther of cate-

gories; however, it seems that it is not always preferable to have a large number

of categories. The investigation does not support the argument that the greater

the number of categori6s, the better the estimates. Furthermore, the choice

of the categories has not yet been systematically defined. Cluster analysis

could be an alternative-to sequential two-way aggregation. Further investigation

is warranted.
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The suggestion of introducing the most important interfering variable

first in the process is also not supported. The orderitself does not seem

to be a determinative factor in the precision of estimates. It is the number

of resulting categories that affects estimates. Once the number of categories

of the final conglomerate variable is selected, the order of variable presenta-

tion does not seem to be critical. However, it should be noted that the order

of presentation may very likely determine the selection of the number of cate-

gories.

The results of the investigation also sh6W that smear-and-sweep tends to

provide a conservative significance test as compared to factorial analysis of

variance. When data are sparse, smear-and-sweep is an alternative method that

may lend some strength to stable estimates, and explore the treatment effect or

possible relationships between classification and dependent variables.
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'Chapter VI: A Comparison of Balancing and Analysis of Covariance

in the AdSustment of Educational Data.

Female and male admission - graduate programs at the

University of North Caroline are compared for 1972-73 ar-

1973-74. To assess possible se.,-.1.-ultlued bias in admission, rates are

adjusted for applicant qualifications by analysis of covariance and by

balancing.

The adjusted admission rates reflect, in one case, i.e., for one

program and one admissiOn year, a slight advantage for male applicants

over females, while in three cases, female applicants were granted a

slight advantage over males in admission. In the remaining four cases,

there is no evidence that sex of applicant, Res.' se, played a role in

admission decisions. Wherever a sex-related advantage is detected, the

favored sex is that with the fewer applicants to the program.
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The dependent variable in this study, defined for each
applicant for a given program and enrollment year is

1

1, if admitted

0, if rejected ,

where j=1 if the applicant is fema1e and j=2 if the applicant
is male, and 1=1, 2, n is i' number of female (or male)

applicants to the program for that year. Then

ns

P = E (Y. /n )
j ij j

i=1

isthemeanY4for sex j, and also represents the proportion

of applicants of sex j who were admitted. The P values are

the female and male admission rates presented in Table I.

Given in Table I are the unadjusted rates of admission by
sex, and in Table II the within-group correlations of interfering
variables with admission

111



TABLE I

Graduate Admission Rates by Sex for 1972 and 1973*

Field

Female Number of Male Number of
Admission Female Admission Male

Year Rate Applicants Rate Applicants

English 1972 32.1 165 34.0 235
1973 20.3 153 25.0 204

History 1972 68.2 44 55.5 182
1973 54.5 55 48.0 177

Library ' .
' 4 175 70.2 57

Science 973 1.0 157 50.0 4o

Sociology 1972 31.6
1973 22.6

38 18.2 66
31 11.6 69

*Excluded from the table are all applicants for whom less than
complete data were available from the set of undergraduate
grade point average, GRE scores, and two letters of recommen-
dation.

TABLE 11

Point-Biserial Correlations of Qualification Variables
with Admission for Female (F) and Male (M) Applicants

GPA GRE V GRE Q GRE Adv REC
Field Year F M F M F M F M F M

English 72 -^ .42 .16 .46 .18 .34 .20 .33 .26.c, .22
73 .37 .27 .28 .29 .15 .27 .25 .35 .17 .19

History 72 .52 .52 .56 .43 .24 .43 .39 .33 .42 .49
73 .38 .36 .62 .54 .43 47 .14 .41 .42 .35

Library 72 .35 .42 .50-.06 .30-.07 __ .39 .29
Science 73 .43 .38 .38 .55 .48 .65 -- __ .33 47

Sociology 72 .27 .46 .51 .14 .67 .15 .60 .16 .07 .32
73 .48 .12 .16 .34 .06 .35 .37 .26 .39 .15
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Also of interest are the mean differences between,the sexes
on the interfering variables, given in Table III. These are
computed by subtracting the mean for female applicants from the
mean for male applicants, so that a positive mean difference
represents a male advantage and a negative mean difference
represents a female advantage. The unit, in each case, is that
in which each variate is naturally recorded.

Somewhat more informative are the standardized mean differ-
ences, presented in Table IV. Here, each male-female mean dif-
ference is divided by the standard error of the mean difference.
Each value in Table IV represents a t statistic. Those values
whirh flfC rom zero by approximatel, ,sio or more are judged

zero sufficiently to rel:resent a statistically
.-Lcant difference between sexes. The results of Table IV

represent the values of

(m) i(m)

t
x2 1

s s
m _211

n
2

n
1

The index m identifies the covariate, as defined in Table V;
s
m is the within-sex standard deviation fx- that covariste;

m, indicates the number of applicants of j.

Inspection of Tables III and IV is L ructive. Without
p.y--ption, the mean gnade point average women applicants
Ls _c-ieler than that for males for each pralc-.am and each year.
CzaZIRE scores, women applicants show higher velan scores than
tale applicants on the verbal test (except ir applicants to
tae Department of English), while males shci higher means than
females on the quantitative test, and also (with the exception
of Sociology applicants in 1973) display higher meamscores on
the advanced test. For each program and each year, the mean
summary'score derived from letters of recommendation is higher
for males than for females. The mean differences on GRE7Q for
male and female applicants to English is extraordinarily large,
more than 70 poants both years (Table III), with highly
sigrrificant t statistics, 7.1 and 6.6 (Valle IV)-

A_comment is in arder concerning the consistent advantage
ale applicants on mean level of recommendation for graduate

(Tables III and IV), especially since it contrasts with a
,le advantage on grade point average and (usually) on GREI'V.
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TABLE V

Variables Pertaining to Admission Qualifications

Variable The Nature of the Variable

X
1 Undergraduate grade.point average for final two

years (GPA)

X" Verbal score on the Graduate Record Examination2
(GRE-V)

X3 Quantitative score on the Graduate Record
Ekamination (GRE-Q)

X
4

Score on the Advanced Test, Graduate Record
Ekamination (GRE-A)

X
5

Mean recommendation (with each coded 0-4)
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It is possible that this represents a bias toward males on the
part of those who recommend applicants, who most frequently
are male faculty members. However, the recommendation is
couched in terms of the probability that the candidate will
successfully complete a doctoral program; the apparent male
advantage could be the result of possibly valid judgments that
women have been more likely than men to discontinue graduate
work before receiving the Ph.D.

TABLE VI

Comparison of Unadjusted and Adjusted Female (F)
and Male-Female (M-F) Admission Rates

Field Year
Unadjusted

'ANCOVA
F

Ad usted

M-FP M-P M-F
Balancing
F

English 1972 32.1 1.9 33.5 - 4 31.9, 2.3
1973 20.3 4.7 23.0 - .1 22.6' .7

History 1972 68.2 -12.7 67.9 -12.3 68.3 -12.8
1973 54.5 - 6.5 48.9 .9 46.3 4.3

Library 1972 59.4 11L6 59.6 10.1 59.0 12.4
Science 1973 51.0 - L.0 50 .6 .8 50.0 3.8

Sociology 1972 :1.6 -13.4 29.2 - 9.7 30.4 -11.5
1973 22.6 -11.0 21.9 -10.0 22.3 -10.6

A reasonable indication of apparent favoritism toward
males in admisSion to graduate study is provided by the male-
female difference in admission:rate. Por each program and
each year, this difference is compared in Table 71 with the
"male-female difference after adjustment by analysis of covari-
ance And adjustment by balancing for the sex differences on
all five interfering variables. The adjusted differences in
admission rate using analysis of covariance are plotted against
the unadjusted differences in Figure 1.

From Table VI or Figure 1, several conclusions follow.

First, neither the covariamme adjustment nor the balancing
a2.1-ustment radically changes the impressions gained from as-
altzsing unadjusted differences in admission rates for men and
women. In the most extreme cases, History in 1972 and Sociology
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in both years appeared to favor female applicants, and the
appearance applies to admission rates following adjustment;
Library S6ience in 1972 appeared to favor male applicants
and, again, the adjustment leads to no different appearance.

A somewhat different conclusion does arise, however, re-
garding the influence of sex of applicant upon admission policy
in History for 1973 and in English for 1973. The adjusted re-
sults for HistorY, 5.973, suggest that the apparent favoritism
of female applicants may have been cor" , _ale-female
differences in scores on the covariates. While the unadjusted
rates favored women by 6.5 percent, adjusted rates actually
favor men by .9 percent from ANCOVA, and by 4.3 percent from
balancing. For Eng15-5-1-1, 1973, unadjusted rates suggested a
tendency to favor mal-es slightly over females in admission.
Atter adjustment, there are only negligible differences between
male and female rat-s.

10

C.)

CV

CV
4.4

4.4

NA

4-1
03

it$

O cary Science, '73
Slacw=y, '73

gi

Enalleh '73
tnalleb, '72

Social y, 72

etiology, '73

e History, 72

-10 -s 0

Unadjusted Difference

FIG. 1

Library Science, 72

Male-Female Differences in Admission Rates: Adjusted Differ-
ences (ty Analysis of Covariance) vs. Unadjusted Differences
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The fourth and sixth columns.of Table VI suggest that,
for one program in one year, Library Science in 1972, male
applicants were accepted more frequently than female applicants
for reasons other than differences in grade point nverage,
test scores, or strength of recommendations. Fa:: r story in
1972 and for Sociology in both years, female app... Ants app
to have been granted a similar ,. 'vantage. In the
four cases, there is no evidelie that sex of applicant, per se,
played a role in admission decisions.

DISCUSSION

Adjustment techniques as used in thiz study provide an
answer to the question of ,Jnat female and:I-male admission rates
to graduate study might have been if the n7....7c3 sexes had pre-
sented equal qualifications on a set of interfering character-
istics, as these characteristics were used by the admission
committee to select applicants. Interpretation of adjusted
scores must be tempered by the realization that these adjust-
ments occur under the admission committee's definition of
qualification.

Adjusted rates provide some clue as to what male and fe-male acceptance rates might have been if:males and females hadhad the same distributions for the interfering variables. Itis most meaningful to examine adjusted rates in conjunction
with unadjusted rates, which represent how often females and
males in reality were accepted. Adjusted acceptance rates pro-vide more information concerning the fairness of the admissions
committee, but when examined in conjunction with unadjusted
rates they also provide information concerning the differential
qualifications of males and females. A large difference be-
tween unadjusted rates and rates adjusted for a particular
characteristic suggests that the average score is quite differ-
ent for male and female applicants, and also that the committee
considers this difference to be important. Such a pattern of
scores may provoke interest as to why the applicants of one
sex are more qualified than those of the other on the average
and also as to why the committee considers this characteristicto be important in defining qualification. For example, fe-
males applying to these four departments seem to have higher
GPA and GRE-V averages but lower GRE-Q, GRE-ADV, and. REC.. ,.
averages than male applicants in the corresponding departments.It would be interesting to investigate haw uniform this pattern
is among applicants to other departments at this university
and among applicants to other graduate schools. _:.2,Ven if ad-
justed male and female rates are approximately ttre: same, fur-
ther investigation may be desirable if unadjusted rates are
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very differen- I Other, since this -7Psts thE th

applicants of :e much more qualif ,un those of
the other. I'm ei -aaidity study ilagnt be conducted
to insure that interferin characteristics are being used
fairly, or a study might be done to determine why highly qual-
ified persons of one sex but not of the other are motivated to
apply to the department.

In this investigation of admission of applicants to four
graduate programq, only modest differences were observed be- -

tween admission rates for females and males, sometimes favoring
one sex and sometimes favoring the other. After adjusting for
sex differences in undergraduate grade point average, Graduate
Record Examinations sr.orei, and recommendations, some of these
differences remained (three favoring females, one favoring
wales), while others disappeared. The study illustrates the
appropriateness of adjusting admission rates before drawing
conclusions concerning sex differences in admission to graduate
study.

119



-119-

Conclusions

A recurring problem in educational research (and indeed in social, beha-

vioral, and medical research) has been the adjustment of data tO account for

initial differences among observed groups of individuals on attributes uncon-

trollable by the researcher. Unlike,the experimental solution introduced by

Fisher--randomization--which typically cannot be employed in the educational

setting, the majority of "solutions" employed by educational evaluators have

beenessentially statistical or data analytic adjustments. While the use of

this class of techniques is by no means new, little in the way of systematic

investigation of their nature or relation to other statistical techniques

emerging from the Fisherian tradition has been undertaken. -

In such nationally important research undertakings as the NAEP studies

of educational progress, it was appropriate to employ such techniques, still

without a detailed understanding of their nature. Chief among these techniques

was that known as balancing, defined for situations in which the basic data are

proportions of successes in the cells of a multiply classified table, usually

with unequal numbers of basic observations in the several cells. It was, at

the outset, known that simple comparisons of raw proportions would lead to

confounded results and hence it was appropriate t6 employ a technique which

could potentially untangle the various influences which exhibited themselves

in the data.

Balancing is not, however, the only technique that has been proposed to

accomplish this end. Techniques such as direct and indirect standardization,

"smear-and-sweep," and the analysis of covariance have all been employed at

various times for similar purposes.
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It was the aim of the research herein reported to develop a better under-

standing of the nature and similarities of these techniques, thereby to make

possible a greater appreciation of their implications for applied research.

As it has turned out, there is, for many of these techniques, a single unifying

approach, that of the nonorthogonal analysis of variance. By viewing them in

terms of this type of analysis, unexpected insights into their nature were

found. In order to accomplish this, however, more needed to be understood

about the nonorthogonal analysis of variance and hance a substantial portion

of the activities of this investigation was spent on a detailed study of this

technique.

It was found that the nature of the nonorthogonal analysis of variance

can be understood by viewing it as a comparison of competing models with the

role of significance testing being simply the means for selecting the best of

the competing models. It was found that both ignoring and eliminating tests

were jointly necessary to accomplish these ends and that it is not always

possible to aelect a single best model (i.e., there is the possibility, albeit

rare, for an ambiguous result). Of importance for the later insights into

adjustment techniques were the results on estimation which follow the selection

of the "best" model, particularly those results which bear upon marginal means

and the concept of weighting.

With the results from the study of the nonorthogonal analysis of variance

firmly established, we looked more closely at the several adjustment technives.

As had been speculated, it was possible to show that if one defines success or

failure as a binary random variable, the equations of the balancing method are

identical to those that define the nonorthogonal analysis of variance in a main

effects model. The result of this equivalence is that one can, with some care,

use standard'ANOVA programs to perform balancing; consequently, the large body
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of literature concerning analysis of variance can be directly applied to the

balancing situation. Of greater importance for interpretation, however, is

the virtual identity between the balanced estimates and the estimated marginal

means in nonorthogonal ANOVA. This identity led us to explore the various

types of weighting schemes for marginal means ana to conclude that, in a more

general, and possibly interactive context, one needs first to adopt a linear

model which accurately reflects the population from which the data were obtained.

Following the selection of the appropriate model (a significance testing problem)

and the proper estimation of parameters in that model (an estimation problem

independent of the significance testing problem), the weights are then chosen

. as a function of the use to which the marginal means are to be put. Balancing,

ich inherently implies a main effects model, has been used to compare groups

as if the groups were comparable on other variables. This necessarily implies

estimation in a main effects model followed by weighting with singly subscripted

weights. If, however, one were to decide that an interactive model was more

appropriate (by use of the nonorthogonal ANOVA, for instance), one could esti-

mate cell means in that model and then again use singly subscripted weights to

draw the same type of conclusions but under a rather different model of nature.

Direct standardization can be viewed in a similar way. Since direct stand-

ardization is based on observed cell means (estimates from an interactive model)

the results of direct standardization must differ from those of balancing (a

main effects model) when interactions are present. Standardized estimates

can also be obtained by estimation in an interactive model combined with the

use of.singly subscripted weights based upon the proportion of cases in the

"standard" populations. Indirect standardization, however,_ does not fit this

type of model, and may give different results from balancing, even when no

interaction is present.
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Adjustment by analysis of covariance is similar to both balancing and

direct standardization although on its face it appears to provide a different

type of adjustment. If one considers a multifactor main effects ANOVA design,

where for a particular factor one includes only the linear component in the

model, the estimated cell means are identical to what would be obtained, had

a covariate been used in place of the factor. In this special and somewhat

limited case the balanced estimates will be identical to estimates adjusted

for a covariate. One could as well generalize this result to interactive

models, so that we have a class of adjustment procedures which are essentially

equivalent, differing primarily in the choice of the appropriate linear model.

The choice between balancing, direct standardization, and analysis of

covariance is necessarily dependent only upon which provides the most appro-

priate linear model. In fact, none of them may provide a parsimonious model,

and we think it preferable to think of choosing the correct model in the more

general context of nonorthogonal ANOVA with these special cases providing

frequently chosen options. Indirect standardization would seem to be a less

preferable choice,

The smeax-and-sweep procedure differs markedly from the above procedures in

that it is comparitively ill-defined and arbitrary; there is no well-justified

rule for deciding the order in which classification variables are to be selected

and how cells should be pooled. Our investigation suggests that the number of

categories may substantially affect the estimated effects while the order of

variables has a considerably smaller effect. In view of the arbitrariness

involved, we can see little justification for the use of the smear-and-sweep

procedure to meet the purposes that also may be served by balancing or analysis
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In summiry, a number of the adjustment techniques employed for the purpose

of adjusting for initial differences among observed groups are closely related

through the more general nonorthogonal analysis of variance. In general these

techniques are actually a combination of three rather distinct processes: the

determination of an appropriate linear model, the estimation of parameters, and

the combining of estimates by a weighting scheme. Each technique (save smear-

and-sweep) employs a particular combination of these, usually prescribed before

the fact. A detailed understanding of how each operates relative to these

processes then allows for a better understanding of its basic nature.
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